Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

HIV-1: Gambling on the evolution of drug resistance?

Despite the huge size of the HIV population in an infected patient, chance has an unexpected influence on its evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Havlir, D.V. & Richman, D.D. Viral dynamics of HIV: Implications for drug development and therapeutic strategies. Ann. Intern. Med. 124, 984–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Embretson, J. et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 363, 359–362 (1993).

    Article  Google Scholar 

  3. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Piatak, M., Jr. et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. & Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected Cell lifetime, and viral generation time. Science 271, 1582–1586 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Eigen, M. New concepts for dealing with the evolution of nucleic acids. Cold Spring Harbor Symposia on Quantitative Biology LII, 307–320 (1987).

    Article  Google Scholar 

  7. Drake, J.W. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90, 4171–4175 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mansky, L.M. & Temin, H.M. Lower in vivo mutation rate of human immunodeficiency virus-type 1 than that predicted from the fidelity of purified reverse tran-scriptase. J. Virol. 69, 5087–5094 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wain-Hobson, S. The fastest genome evolution ever described: HIV variation in situ. Curr. Op. Genet. Devel. 3, 878–883 (1993).

    Article  CAS  Google Scholar 

  10. Leigh-Brown, A.J. & Holmes, E.G. The evolutionary biology of human immunodeficiency virus. Ann. Rev. Ecol. Sys. 25, 127–165 (1994).

    Article  Google Scholar 

  11. Coffin, J.M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis and therapy. Science 267, 483–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Frost, S.D.W. & McLean, A.R. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS 8, 323–332 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Haldane, J.B.S. A mathematical theory of natural and artificial selection. Part V. Selection and mutation. Proc. Comb. Phil. Soc. 28, 838–844 (1937).

    Google Scholar 

  14. Crow, J.F. & Kimura, M. An introduction to population genetics theory. Anonymous (Harper and Row, New York, 1970).

    Google Scholar 

  15. Wright, S. Evolutionary and the genetics of populations. in The Theory of Gene Frequencies 512 (University of Chicago Press, Chicago, 1969).

    Google Scholar 

  16. Hudson, R.R. Gene genealogies and the coalescent process. in Oxford Surveys in Evolutionary Biology (ed. Futuyma, D. & Antonovics, J.) 1–44 (Oxford University Press, Oxford, 1990).

    Google Scholar 

  17. Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schuurman, R. et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine. J. Infect. Dis. 171, 1431–1437 (1995).

    Article  Google Scholar 

  19. Richman, D.D. et al. HIV-1 mutants resistant to non-nucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc. Natl. Acad. Sci. USA 88, 11241–11245 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Havlir, D.V., Eastman, S., Gamst, A. & Richman, D.D. Nevirapine-resistant human immunodeficiency virus: Kinetics of replication and estimated prevalence in untreated patients. J. Virol. 70, 7894–7899 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Richman, D.D. et al. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J. Virol. 68, 1660–1666 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Havlir, D.V. et al. Factors determining sustained antiviral response to nevirapine. 4th International HIV Drug Resistance Workshop. Sardinia, Italy, July 6–9, 1995 (Abstract).

    Google Scholar 

  23. Larder, B. Nucleosides and foscarnet—mechanisms. in Antiviral Drug Resistance (ed. Richman, D.D.) 169–190 (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  24. Richman, D.D., Grimes, J.M. & Lagakos, S.W. Effect of stage of disease and drug dose on zidovudine susceptibilities of isolates of human immunodeficiency virus. J. AIDS. 3, 743–746 (1990).

    CAS  Google Scholar 

  25. D"Aquila, R.T. Nucleosides and foscarnet—clincal aspects. in Antiviral Drug Resistance (ed. Richman, D.D.) 191–223 (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  26. Shirasaka, T. et al. Changes in drug sensitivity of human immunodeficiency virus type 1 during therapy with azidothymidine, dideoxycytidine, and dideoxyinosine: An in vitro comparative study. Proc. Natl. Acad. Sd. USA 90, 562–566 (1993).

    Article  CAS  Google Scholar 

  27. Shafer, R.W. et al. Combination therapy with zidovudine and didanosine selects for drug-resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. J. Infect. Dis. 169, 722–729 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Shirasaka, T. et al. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc. Natl. Acad. Sci. USA 92, 2398–2402 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Gulick, R.M. et al. Potent and sustained antiretroviral activity of indinavir (IDV), zidovudine (ZDV) and lamivudine (3TC), Xlth International Conference on AIDS, Vancouver, Canada, July 7–12, Abstr. Th. B 931 (1996) (Abstract).

  31. Molla, A. et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Med. 2, 760–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Kozal, M.J. et al. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nature Med. 2, 753–759 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Lech, W.J. et al. In vivo sequence diversity of the protease of human immunodeficiency virus type 1: Presence of protease inhibitor-resistant variants in untreated subjects. J. Virol. 70, 2038–2043 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bozzette, S., McCutchan, J.A., Specter, S.A., Wright, B. & Richman, D.D. A cross-sectional comparison of persons with syncytium-and non-syncytium-inducing human immunodeficiency virus. J. Infec. Dis. 168, 1374–1 379 (1993).

    Article  CAS  Google Scholar 

  35. Koot, M. et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ Cell depletion and progression to AIDS. Ann. Intern. Med. 118, 681–688 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Richman, D.D. & Bozzette, S.A. The impact of syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J. Infect. Dis. 169, 968–974 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Muller, H.J. The relation of recombination to mutational advance. Mutation Research 1, 2–9 (1964).

    Article  Google Scholar 

  38. Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. New Engl. J. Med. 332, 228–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Leigh-Brown, A.J. Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc. Natl. Acad. Sci USA (in the press).

  41. Delassus, S., Cheynier, R. & Wain-Hobson, S. Nonhomogeneous distribution of human immunodeficiency virus type 1 proviruses in the spleen. J. Virol. 66, 5642–5645 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelly, J.K. An application of population genetic theory to synonymous gene sequence evolution in the human immunodeficiency virus (HIV). Genet. Res. 64, 1–9 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Kelly, J.K. Replication rate and evolution in the human immunodeficiency virus. J. Theor. Biol. 180, 359–364 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leigh Brown, A., Richman, D. HIV-1: Gambling on the evolution of drug resistance?. Nat Med 3, 268–271 (1997). https://doi.org/10.1038/nm0397-268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-268

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing