Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An imprinted gene p57KIP2 is mutated in Beckwith–Wiedemann syndrome

Abstract

p57KIP2 is a potent tight-binding inhibitor of several G1 cyclin/Cdk complexes, and is a negative regulator of cell proliferation1,2. The gene encoding p57KIP2 is located at 11p15.5 (ref. 2), a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome, a cancer-predisposing syndrome, making it a tumour-suppressor candidate. Several types of childhood tumours including Wilms' tumour, adrenocortical carcinoma and rhabdomyosarcoma exhibit a specific loss of maternal 11p15 alleles, suggesting that genomic imprinting3–8 is involved9–12. Genetic analysis of the Beckwith-Wiedemann syndrome indicated maternal carriers, as well as suggesting a role of genomic imprinting13. Previously, we and others demonstrated that p57KIP2 is imprinted and that only the maternal allele is expressed in both mice and humans14–16. Here we describe p57KIP2 mutations in patients with Beckwith-Wiedemann syndrome. Among nine patients we examined, two were heterozygous for different mutations in this gene — a missense mutation in the Cdk inhibitory domain resulting in loss of most of the protein, and a frameshift resulting in disruption of the QT domain. The missense mutation was transmitted from the patient's carrier mother, indicating that the expressed maternal allele was mutant and that the repressed paternal allele was normal. Consequently, little or no active p57KIP2 should exist and this probably causes the overgrowth in this BWS patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mong-Hong, L., Reynisdottir, I. & Massgue, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article  Google Scholar 

  2. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Softer, D. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22, 127–146 (1988).

    Article  Google Scholar 

  4. Barlow, D.P. Imprinting: a gamete's point of view. Trends Genet. 10, 194–199. (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ohlsson, R., Barlow, D.P. & Surani, A. Impression of imprints. Trends Genet. 10, 415–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Razin, A. & Cedar, H. DNA methylation and genomic imprinting. Cell 77, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev. 4, 265–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Nicholls, R.D. New insights reveal complex mechanisms involved in genomic imprinting. Am. J. Hum. Genet. 54, 733–740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. Hum. Genet. 40, 413–420 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms' tumour. Oncogene. 5, 1666–1668 (1990).

    Google Scholar 

  11. Scrable, H. et al. model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl. Acad. Sci. USA 86, 7480–7484 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seizinger, B. et al. V. Report of the committee on chromosome and gene loss in human neoplasia. Cytogenet. Cell. Genet. 58, 1080–1096 (1991).

    Article  Google Scholar 

  13. Lubinsky, M., Herrmann, J., Kosseff, A.L. & Opitz, J.M. Autosomal-dominant sex-dependent transmission of the Wiedemann-Beckwith syndrome. Lancet 1, 932 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Hatada, I. & Mukai, T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nature Genet. 11, 204–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Hatada, I. et at. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum. Mol. Genet. 5, 783–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Matsuoka, S. et al. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc. Natl. Acad. Sci. USA 93, 3026–3030 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiedemann, H.R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur. J. Pediatr. 141, 129 (1983).

    Article  Google Scholar 

  18. Waziri, M., Patil, S.R., Hanson, J.W. & Batrley, J. A Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J. Pediat 102, 873–876. (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Okano, Y. et al. An infant with Beckwith-Wiedemann syndrome and chromosomal duplication 11p13–pter: correlation of symptoms between 11p trisomy and Beckwith-Wiedemann syndrome. Jap. J. Hum. Genet. 31, 365–372 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Pueschel, S.M. & Padre-Mendoza, T. Chromosome 11 and Beckwith-Wiedemann syndrome. J. Pediat. 104, 484–485 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Niikawa, N. et al. The Wiedemann-Beckwith syndrome: Pedigree studies on five families: evidence for autosomal dominant inheritance with variable expressivity. Am. J. Med. Genet. 24, 41–15 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Moutou, C., Junien, C., Henry, I. & Bonaiti-pellie, C. Beckwith-Wiedemann syndrome: A demonstration of the mechanisms responsible for the excess of transmitting females. J. Med. Genet. 29, 217–220 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Best, L.G. & Hoekstra, R.E. Wiedemann-Beckwith syndrome: autosomal dominant inheritance in a family. Am. J. Hum. Genet. 9, 291–299 (1981).

    Article  CAS  Google Scholar 

  24. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Ping, A.J. et al. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumour locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koi, M. et al. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260, 361–364 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Hoovers, J.M.N. et al. Multiple genetic loci within 11p15 defined by Beckwith-Wiedemann syndrome rearrangement breakpoints and subchromosomai transferable fragments. Proc. Natl. Acad. Sci. USA 92, 12456–12460 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Polyak, K. et al. Cloning of p27 (Kip1), a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27KIP1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Fero, M.L.A. et al. Syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27KIP1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Nakayama, K. et al. Mice lacking p27KIP1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izuho Hatada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatada, I., Ohashi, H., Fukushima, Y. et al. An imprinted gene p57KIP2 is mutated in Beckwith–Wiedemann syndrome. Nat Genet 14, 171–173 (1996). https://doi.org/10.1038/ng1096-171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing