Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A type X collagen mutation causes Schmid metaphyseal chondrodysplasia

Abstract

The expression of type X collagen is restricted to hypertrophic chondrocytes in regions undergoing endochondral ossification, such as growth plates. The precise function of type X collagen is unknown but the tissue–specific expression prompted us to examine the gene in hereditary disorders of cartilage and bone growth (osteochondrodysplasias). We have identified a 13 base pair deletion in one type X collagen allele segregating with autosomal dominant Schmid metaphyseal chondrodysplasia in a large Mormon kindred (lod score= 18.2 at Θ = 0). The mutation produces a frameshift which alters the highly conserved C–terminal domain of the α1(X) chain and reduces the length of the polypeptide by nine residues. This mutation may prevent association of the mutant polypeptide during trimer formation, resulting in a decreased amount of normal protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacenko, O., Olsen, B.R. & LuValle, P. Organization and regulation of collagen genes. Crit. Rev. euk. Gene Exp. 1, 327–353 (1991).

    CAS  Google Scholar 

  2. Schmid, T.M. & Linsenmayer, T.F. A short chain (pro) collagen from aged endochondral chondrocytes. J. biol. Chem. 258, 9504–9509 (1983).

    CAS  PubMed  Google Scholar 

  3. Yamaguchi, N., Benya, P.D., van der Rest, M. & Ninomiya, Y. The cloning and sequencing of α1 (VIII) collagen cDNA demonstrate that type VIII collagen is a short chain collagen and contains triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen. J. biol. Chem. 264, 16022–16029 (1989).

    CAS  PubMed  Google Scholar 

  4. Yamaguchi, N., Mayne, R. & Ninomiya, Y. The α1 (VIII) collagen gene is homologous to the α(X) collagen gene and contains a large exon encoding the entire triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen. J. biol. Chem. 266, 4508–4513 (1991).

    CAS  PubMed  Google Scholar 

  5. Sawada, H., Konomi, H. & Hirosawa, K. Characterization of the collagen in the hexagonal lattice of Descemet's membrane: its relation to type VIII collagen. J. cell Biol. 110, 219–227 (1990).

    Article  CAS  Google Scholar 

  6. Gordon, M.K. & Olsen, B.R. The contribution of collagenous proteins to tissue-specific matrix assemblies. Curr. Op. Cell Biol. 2, 833–838 (1990).

    Article  CAS  Google Scholar 

  7. Kwan, A.P.L., Cummings, C.E., Chapman, J.A. & Grant, M.E. Macromolecular organization of chicken type X collagen in vitro. J. cell Biol. 114, 597–604 (1991).

    Article  CAS  Google Scholar 

  8. LuValle, P., Ninomiya, Y., Rosenblum, N.D. & Olsen, B.R. The type X collagen gene: intron sequences split the 5′ untranslated region and separate the coding regions for the non-collagenous amino-terminal and triple-helical domains. J. biol. Chem. 263, 18378–18385 (1988).

    CAS  Google Scholar 

  9. Muragaki, Y., Jacenko, O., Apte, S., Mattei, M.-G., Ninomiya, Y. & Olsen, B.R. The α2(VIII) collagen gene —a novel member of the short-chain collagen family located on the human chromosome 1. J. biol. Chem. 266, 7721–7727 (1991).

    CAS  PubMed  Google Scholar 

  10. Apte, S.S. & Olsen, B.R. Characterization of the mouse type X collagen gene. Matrix 13, 165–179 (1993).

    Article  CAS  Google Scholar 

  11. Apte, S., Mattei, M.-G. & Olsen, B.R. Cloning of human α1(X) collagen DNA and localization of the COL10A1 gene to the q21-q22 region of human chromosome 6. FEBS Lett. 282, 393–396 (1991).

    Article  CAS  Google Scholar 

  12. Thomas, J.T. et al. The human collagen X gene. Complete primary translated sequence and chromosomal localization. Biochem. J. 280, 617–623 (1991).

    Article  CAS  Google Scholar 

  13. Apte, S.S., Seldin, M.F., Hayashi, M. & Olsen, B.R. Cloning of the human and mouse type X collagen genes and mapping of the mouse type X collagen gene to chromosome 10. Eur. J. Biochem. 206, 217–224 (1992).

    Article  CAS  Google Scholar 

  14. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphism of human DNA by gel electrophoresis as single-stranded conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  15. Murray, V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucl. Acids Res. 17, 8889 (1989).

    Article  CAS  Google Scholar 

  16. Stephens, F.E. An achondroplasic mutation and the nature of its inheritance. J. Hered. 34, 229–235 (1943).

    Article  Google Scholar 

  17. Lachman, R.S., Rimoin, D.L. & Spranger, J. Metaphyseal chondrodysplasias, Schmid type. Clinical and radiographic delineation with a review of the literature. Pediatr. Radiol. 18, 93–102 (1988).

    Article  CAS  Google Scholar 

  18. Thomas, J.T., Kwan, A.P.L., Grant, M.E. & Boot-Handford, R.P. Isolation of cDNAs encoding the complete sequence of bovine type X collagen. Evidence for the condensed nature of mammalian type X collagen genes. Biochem. J. 273, 141–148 (1991).

    Article  CAS  Google Scholar 

  19. Bächinger, H.P., Bruckner, P., Timpl, R., Prockop, D.J. & Engel, J. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur. J. Biochem. 106, 619–632 (1980).

    Article  Google Scholar 

  20. Bruckner, P., Bächinger, H.P., Timpl, R. & Engel, J. Three conformationally distinct domains in the amino-terminal segment of type III procollagen and its rapid triple helix leads to and comes from coil transmission. Eur. J. Biochem. 90, 595–603 (1978).

    Article  CAS  Google Scholar 

  21. Bruckner, P. & Eikenberry, E.F. Procollagen is more stable in cellulo than in vitro. Eur. J. Biochem. 140, 391–395 (1984).

    Article  CAS  Google Scholar 

  22. Dölz, R., Engel, J. & Kühn, K. Folding of collagen IV. Eur. J. Biochem. 178, 357–366 (1988).

    Article  Google Scholar 

  23. Schmid, T.M., Popp, R.G. & Linsenmayer, T.F. Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann. N.Y. Acad. Sci. 580, 64–73 (1990).

    Article  CAS  Google Scholar 

  24. Reginato, A.M., Lash, J.W. & Jimenez, S.A. Expression of type X collagen mRNA levels in embryonic chick sternum during development. J. biol. Chem. 261, 2897–2903 (1986).

    CAS  PubMed  Google Scholar 

  25. Gibson, G.J. & Flint, M.H. Type X collagen synthesis by chick sternal cartilage and its relationship to endochondral development. J. Cell Biol. 101, 277–284 (1985).

    Article  CAS  Google Scholar 

  26. LuValle, P., Iwamoto, M., Pacifici, M. & Olsen, B.R. Multiple, promoter-specific negative elements restrict type X collagen gene expression to hypertrophic chondrocytes. J.Cell Biol. 121, 1173–1179 (1993).

    Article  CAS  Google Scholar 

  27. Orkin, S.H. in The Molecular Basis of Blood Diseases (eds Stamatoyannopoulos, G. et al.) 106–118 (Saunders, Philadelphia, 1987).

    Google Scholar 

  28. Wasylenko, M.J., Wedge, J.H. & Houston, C.S. Metaphyseal chondrodysplasia, Schmid type. J. Bone Joint Surg. 62A, 660–663 (1980).

    Article  Google Scholar 

  29. International Working Group on Constitutional Diseases of Bone. International classification of osteochondrodysplasias. Am. J. med. Genet. 44, 223–229 (1992).

  30. Ahmad, N.N. et al. Stop codon in the gene for type II procollagen (COL2A1) in a family with the Stickler syndrome (arthro-ophthalmopathy). Proc. natn. Acad. Sci. U.S.A. 88, 6624–6627 (1991).

    Article  CAS  Google Scholar 

  31. Vissing, H., D'Alessio, M., Lee, B., Ramirez, F.R., Godfrey, M. & Hollister, D.W. Glycine to serine substitution in the triple helical domain of proα1(II) collagen results in a lethal perinatal form of short-limbed dwarfism. J. biol. Chem. 264, 18625–18627 (1989).

    Google Scholar 

  32. Sulisalo, T. et al. Cartilage-hair hypoplasia gene assigned to chromosome-9 by linkage analysis. Nature Genet. 3, 338–341 (1993).

    Article  CAS  Google Scholar 

  33. Prockop, D.J. & Kivirikko, K.I. Heritable diseases of collagen. New Engl. J. Med. 311, 376–386 (1984).

    Article  CAS  Google Scholar 

  34. Sweetman, W.A. et al. SSCP and segregation analysis of the human type X collagen gene (COL10A1) in heritable forms of chondrodysplasia. Am. J. hum. Genet. 51, 841–849 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacenko, O., Lu Valle, P.A. & Olsen, B.R. Spondylo metaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transfusion. Nature (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warman, M., Abbott, M., Apte, S. et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet 5, 79–82 (1993). https://doi.org/10.1038/ng0993-79

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing