Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Independent mutations of the human CD3–ε gene resulting in a T cell receptor/CD3 complex immunodeficiency

Abstract

The T–cell receptor (TCR) is composed of two glycoproteins (α and β or γ and δ) associated with four invariant polypeptides (CD3–γ, δ, ε and ζ). The majority of TCR/CD3 complexes contain six polypeptide chains, and although there is some flexibility in the complex subunit stoichiometry the CD3–ε chain is central to CD3 core assembly and full complex formation. We have described previously defective expression of the TCR/CD3 complex in an immunodeficient child. We now report that two independent CD3–ε gene mutations present in the parents have segregated in the patient, leading to defective CD3–ε chain synthesis and preventing normal association and membrane expression of the TCR/CD3 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashwell, J.D. & Klausner, R.D. Genetic and mutationnal analysis of the T-cell antigen receptor. Annu. Rev. Immunol. 8, 139–167 (1990).

    Article  CAS  Google Scholar 

  2. Clevers, H., Alarcon, B., Wileman, T. & Terhorst, C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Ann. Rev. Immunol. 6, 629–662 (1988).

    Article  CAS  Google Scholar 

  3. Klausner, R.D., Lippincott-Schwartz, J. & Bonifacino, J.S. The T Cell antigen receptor: insight into organelle biology. Ann. Rev. cell. Biol. 6, 403–431 (1990).

    Article  CAS  Google Scholar 

  4. Tunnacliffe, A., Buluwela, L. & Rabbitts, T.H. Physical linkage of three CDS genes on human chromosome 11. EMBO J. 6, 2953–2957 (1987).

    Article  CAS  Google Scholar 

  5. Clevers, H.C., Dunlap, S., Wileman, T.E. & Terhorst, C. Human CD3-ε gene contains three miniexons and is transcribed from a non-TATA promoter. Proc. natn. Acad. Sci. U.S.A. 85, 8156–8160 (1988).

    Article  CAS  Google Scholar 

  6. Clevers, H., Lonberg, N., Dunlap, S., Lacy, E. & Terhorst, C. An enhancer located in a CpG-island 3′ to the TCR/CD3-ε gene confers T lymphocyte-specificity to its promoter. EMBO J. 8, 2527–2535 (1989).

    Article  CAS  Google Scholar 

  7. Hall, C., Berkhout, B., Sancho, J., Wileman, T. & Terhorst, C. Requirements for cell surface expression of the human TCR/CD3 complex in non-T cells. Int. Immunol. 3, 359–368 (1991).

    Article  CAS  Google Scholar 

  8. Wileman, T., Carson, G.R., Concino, M., Ahmed, A. & Terhorst, C. The γ and ε subunits of the CDS complex inhibit pre-golgi degradation of newly synthesized T cell antigen receptors. J. cell Biol. 110, 973 (1990).

    Article  CAS  Google Scholar 

  9. Blumberg, R.S. et al. Structure of the T-cell antigen receptor: evidence for two CDS-ε subunits in the T-cell receptor-CDS complex. Proc. natn. Acad. Sci. U.S.A. 87, 7220–7224 (1990).

    Article  CAS  Google Scholar 

  10. Blumberg, R.S. et al. Assembly and function of the T cell antigen receptor. J. biol. Chem. 265, 14036–14043 (1990).

    CAS  PubMed  Google Scholar 

  11. Jin, Y. et al. A fraction of CD3-ε subunits exists as disulfide-linked dinners in both human and murine T lymphocytes. J. biol. Chem. 265, 15850–15853 (1990).

    CAS  PubMed  Google Scholar 

  12. Arnaiz-Vilena, A. et al. Biochemical basis of a novel T lymphocyte receptor immunodeficiency by immunochemistry. Lab. Invest. 64, 675–681 (1991).

    Google Scholar 

  13. Arnaiz-Villena, A. et al. Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-γ subunit of the T-lymphocyte receptor. New Engl. J. Med. 327, 529–533 (1992).

    Article  CAS  Google Scholar 

  14. Perez-Aciego, P. et al. Expression and function of a variant T cell Receptor complex lacking CD3-γ. J. exp. Med. 174, 319–326 (1991).

    Article  CAS  Google Scholar 

  15. Le Deist, F., Thoenes, G., Corado, J., Lisowska-Grospierre, B. & Fischer, A. Immunodeficiency with low expression of the T cell receptor/CD3 complex. Effect on T lymphocytes activation. Eur. J. Immunol. 21, 1641–1647 (1991).

    Article  CAS  Google Scholar 

  16. Thoenes, G. et al. Structural analysis of low TCR/CD3 complex expression in T cells of an immunodeficient patient. J. biol. Chem. 267, 487–493 (1992).

    CAS  PubMed  Google Scholar 

  17. Alcover, A., Maruizza, R.A., Ermonval, M. & Acuto, O. Lysine 271 in the transmembrane domain of the T cell antigen receptor is necessary for its assembly with the CDS complex but not for α\β dimerization. J. biol. Chem. 265, 4131–4135 (1990).

    CAS  PubMed  Google Scholar 

  18. Tan, L., Turner, J. & Weiss, A. Regions of the T cell receptor α and β chains that are responsible for interactions with CDS. J. exp. Med. 173, 1247–1256 (1991).

    Article  CAS  Google Scholar 

  19. Mallabiabarrena, A., Fresno, M. & Alarcon, B. An endoplasmic reticulum retention signal in the CD3-ε chain of the T-cell receptor. Nature 357, 593–596 (1992).

    Article  CAS  Google Scholar 

  20. Vidaud, M. et al. A 5′ splice-region G-C mutation in exon 1 of the human b-globin gene inhibits pre-mRNA splicing: A mechanism for β+-halassemia. Proc. natn. Acad. Sci. U.S.A. 86, 1041–1045 (1989).

    Article  CAS  Google Scholar 

  21. Dianzani, I. et al. Screening for mutations in the Phenylalanine Hydroxylase gene from Italian patients with Phenylketonuria by using the chemical cleavage method: a new splice mutation. Am. J. hum. Genet. 48, 631–635 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kishimoto, T.K., O'Connor, K. & Springer, T.A. Leukocyte Adhesion Deficiency. J. biol. Chem. 264, 3588–3595 (1989).

    CAS  PubMed  Google Scholar 

  23. Back, A.L., Kwok, W.W. & Hickstein, D.D. Identification of two molecular defects in a child with leukocyte adherence deficiency. J. biol. Chem. 267, 5482–5487 (1992).

    CAS  PubMed  Google Scholar 

  24. Aebi, M., Horning, H., Padgett, R.A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).

    Article  CAS  Google Scholar 

  25. Akli, S., Chelly, J., Lacorte, J-M., Poenaru, L. & Kahn, A. Seven novel Tay-Sachs mutations detected by chemical mismatch cleavage of PCR-amplified cDNA fragments. Genomics 11, 124–134 (1991).

    Article  CAS  Google Scholar 

  26. Baserga, S.J. & Benz, E.J. Jr. Nonsense mutations in the human β-globin gene affect mRNA metabolism. Proc. natn. Acad. Sci. U.S.A. 85, 2056–2060 (1988).

    Article  CAS  Google Scholar 

  27. Liebhaber, S.A., Coleman, M.B., Adams, J.G., Cash, F.E. & Steinberg, M.H. Molecular basis for non deletion α Thalassemia in american blacks. J. clin. Invest. 80, 154–159 (1987).

    Article  CAS  Google Scholar 

  28. Baserga, S., Edward, J. & Benz, E.J. Jr. β-globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability. Proc. natn. Acad. Sci. U.S.A. 89, 2935–2939 (1992).

    Article  CAS  Google Scholar 

  29. Kashii, S. et al. Adenosine deaminase deficiency due to hetrozygous abnormality consisting of a deletion of exon 7 and the absence of enzyme mRNA. J. cell. Biochem. 47, 49–53 (1991).

    Article  CAS  Google Scholar 

  30. Faustinella, F. et al. Catalytic triad residue mutation (Asp156>Gly) causing familail lipoprotein lipase deficiency. J. biol. Chem. 266, 14418–14424 (1991).

    CAS  Google Scholar 

  31. Gotoda, T. et al. Occurence of multiple aberrently spliced mRNAs upon a donnor splice site mutation that causes familial lipoprotein lipase deficiency. J. biol. Chem. 266, 24757–24762 (1991).

    CAS  PubMed  Google Scholar 

  32. Ohno, K. & Suzuki, K. Multiple abnormal β-hexosaminidase α chain mRNA as in a compound-heterozygous ashkenazi Jewish patient with Tay-Sachs disease. J. biol. Chem. 263, 18563–18567 (1988).

    CAS  Google Scholar 

  33. Alarcon, B. et al. The CD3-γ and CD3-δ subunits of the T cell antigen receptor can be expressed within distinct functional TCR/CD3 complexes. EMBO J. 10, 903–912 (1991).

    Article  CAS  Google Scholar 

  34. Kapes, D.J. & Tonegawa, S. Surface expression of alternative forms of the TCR/CD3 complex. Proc. natn. Acad. Sci. U.S.A. 88, 10619–10623 (1991).

    Article  Google Scholar 

  35. Buferne, M. et al. Role of CD3-δ in surface expression of the TCR/CD3 complex and in activation for killing analysed with a CD3-δ-negative cytotoxic T lymphocyte variant. J. Immunol. 148, 657–664 (1992).

    CAS  PubMed  Google Scholar 

  36. Gold, D.P. et al. Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex. Nature 321, 431–434 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soudais, C., de Villartay, JP., Le Deist, F. et al. Independent mutations of the human CD3–ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat Genet 3, 77–81 (1993). https://doi.org/10.1038/ng0193-77

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0193-77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing