Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selecting and maintaining a diverse T-cell repertoire

Abstract

To provide a T-cell population that will respond promptly to foreign antigen, the immune system looks inward, using the variety of self-antigens to select and maintain a diverse repertoire of receptors. A protective immune system must include a T-lymphocyte population that is poised to respond to foreign antigenic peptides presented by self-major histocompatibility complex molecules. As the organism cannot predict the precise pathogen-derived antigens that will be encountered, the system uses the diverse array of self-peptides bound to self-major histocompatibility complex molecules, not only to select a receptor repertoire in the thymus, but also to keep naïve T cells alive and ‘ready for action’ in the periphery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nature of TCR interaction with peptide–MHC ligand.
Figure 2: Consequences of TCR interactions with ligands of varying affinity in the thymus and periphery.
Figure 3: Possible mechanisms to explain the proliferation by naïve T cells in response to low-affinity ligands following T-cell depletion.
Figure 4: Response to infection and the recovery of homeostasis.

Similar content being viewed by others

References

  1. Zinkernagel,R. M. & Doherty,P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–710 (1974).

    ADS  CAS  PubMed  Google Scholar 

  2. Babbitt,B. P., Allen,P. M., Matsueda,G., Haber,E. & Unanue,E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317, 359–361 (1985).

    ADS  CAS  PubMed  Google Scholar 

  3. Townsend,A. R., Gotch,F. M. & Davey,J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42, 457–467 (1985).

    CAS  PubMed  Google Scholar 

  4. Shortman,K. & Wu,L. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47 (1996).

    CAS  PubMed  Google Scholar 

  5. Jameson,S. C., Hogquist,K. A. & Bevan,M. J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).

    CAS  PubMed  Google Scholar 

  6. Kisielow,P. & von Boehmer,H. Development and selection of T cells: facts and puzzles. Adv. Immunol. 58, 87–209 (1995).

    CAS  PubMed  Google Scholar 

  7. Davis,M. M. & Bjorkman,P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    ADS  CAS  PubMed  Google Scholar 

  8. Bjorkman,P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    ADS  CAS  PubMed  Google Scholar 

  9. Brown,J. H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

    ADS  CAS  PubMed  Google Scholar 

  10. Scott,C. A., Peterson,P. A., Teyton,L. & Wilson,I. A. Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 8, 319–329 (1998).

    CAS  PubMed  Google Scholar 

  11. Garcia,K. C. et al. An alpha beta T cell receptor structure at 2.5?Å and its orientation in the TCR–MHC complex. Science 274, 209–219 (1996).

    ADS  CAS  PubMed  Google Scholar 

  12. Garcia,K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide–MHC antigen. Science 279, 1166–1172 (1998).

    ADS  CAS  PubMed  Google Scholar 

  13. Garboczi,D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    ADS  CAS  PubMed  Google Scholar 

  14. Ding,Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    CAS  PubMed  Google Scholar 

  15. Garcia,K. C., Teyton,L. & Wilson,I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    CAS  PubMed  Google Scholar 

  16. Teng,M. K. et al. Identification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes. Curr. Biol. 8, 409–412 (1998).

    CAS  PubMed  Google Scholar 

  17. Fehling,H. J. & von Boehmer,H. Early alpha beta T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275 (1997).

    CAS  PubMed  Google Scholar 

  18. Irving,B. A., Alt,F. W. & Killeen,N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    ADS  CAS  PubMed  Google Scholar 

  19. Zerrahn,J., Held,W. & Raulet,D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    CAS  PubMed  Google Scholar 

  20. Merkenschlager,M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sim,B. C., Zerva,L., Greene,M. I. & Gascoigne,N. R. J. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science 273, 963–966 (1996).

    ADS  CAS  PubMed  Google Scholar 

  22. Sim,B. C. et al. Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor alphachain locus. Curr. Biol. 8, 701–704 (1998).

    CAS  PubMed  Google Scholar 

  23. van Meerwijk,J. P. M. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robey,E. & Fowlkes,B. J. Selective events in T cell development. Annu. Rev. Immunol. 12, 675–705 (1994).

    CAS  PubMed  Google Scholar 

  25. Nikolic-Zugic,J. & Bevan,M. J. Role of self-peptides in positively selecting the T-cell repertoire. Nature 344, 65–67 (1990).

    ADS  CAS  PubMed  Google Scholar 

  26. Sha,W. C. et al. Positive selection of transgenic receptor-bearing thymocytes by Kb antigen is altered by Kb mutations that involve peptide binding. Proc. Natl Acad. Sci. 87, 6186–6190 (1990).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hogquist,K. A., Gavin,M. A. & Bevan,M. J. Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture. J. Exp. Med. 177, 1469–1473 (1993).

    CAS  PubMed  Google Scholar 

  28. Ashton-Rickardt,P. G., Van Kaer,L., Schumacher,T. N., Ploegh,H. L. & Tonegawa,S. Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell 73, 1041–1049 (1993).

    CAS  PubMed  Google Scholar 

  29. Ashton-Rickardt,P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663 (1994).

    CAS  PubMed  Google Scholar 

  30. Hogquist,K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS  PubMed  Google Scholar 

  31. Sebzda,E. et al. Mature T cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med. 183, 1093–1104 (1996).

    CAS  PubMed  Google Scholar 

  32. Hogquist,K. A., Jameson,S. C. & Bevan,M. J. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3, 79–86 (1995).

    CAS  PubMed  Google Scholar 

  33. Davis,M. M. et al. Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    ADS  CAS  PubMed  Google Scholar 

  34. Alam,S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 558–559 (1996).

    Google Scholar 

  35. Hogquist,K. A. et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 7, 221–231 (1997).

    Google Scholar 

  36. Hu,Q. et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 7, 221–231 (1997).

    CAS  PubMed  Google Scholar 

  37. Baldwin,K. K., Reay,P. A., Wu, L., Farr,A. & Davis,M. M. A T cell receptor-specific blockade of positive selection. J. Exp. Med. 189, 13–24 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kersh,G. J. & Allen,P. M. Essential flexibility in the T-cell recognition of antigen. Nature 380, 495–498 (1996).

    ADS  CAS  PubMed  Google Scholar 

  39. Fung-Leung,W. P. et al. Antigen presentation and T cell development in H2-M-deficient mice. Science 271, 1278–1281 (1996).

    ADS  CAS  PubMed  Google Scholar 

  40. Martin,W. D. et al. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84, 543–550 (1996).

    CAS  PubMed  Google Scholar 

  41. Miyazaki,T. et al. Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell 84, 531–541 (1996).

    CAS  PubMed  Google Scholar 

  42. Ignatowicz,L., Kappler,J. & Marrack,P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–541 (1996).

    CAS  PubMed  Google Scholar 

  43. Fukui,Y. et al. Positive and negative CD4+ thymocyte selection by a single MHC class II/peptide ligand affected by its expression level in the thymus. Immunity 6, 401–410 (1997).

    CAS  PubMed  Google Scholar 

  44. Grubin,C. E., Kovats,S., deRoos,P. & Rudensky,A. Y. Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II-bound self-peptides. Immunity 7, 197–208 (1997).

    CAS  PubMed  Google Scholar 

  45. Tourne,S. et al. Selection of a broad repertoire of CD4+ T cells in H-2Ma0/0 mice. Immunity 7, 187–195 (1997).

    CAS  PubMed  Google Scholar 

  46. Surh,C. D., Lee,D. S., Fung-Leung,W. P., Karlsson,L. & Sprent,J. Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity 7, 209–219 (1997).

    CAS  PubMed  Google Scholar 

  47. Sant'Angelo,D. B. et al. The imprint of intrathymic self-peptides on the mature T cell receptor repertoire. Immunity 7, 517–524 (1997).

    CAS  PubMed  Google Scholar 

  48. Barton,G. M. & Rudensky,A. Y. Requirement for diverse, low-abundance peptides in positive selection of T cells. Science 283, 67–70 (1999).

    ADS  CAS  PubMed  Google Scholar 

  49. Davey,G. M. et al. Preselection thymocytes are most sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucas,B., Stefanova,I., Yasutomo,K., Dautigny,N. & Germain,R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    CAS  PubMed  Google Scholar 

  51. Tanchot,C., Rosado,M. M., Agenes,F., Freitas,A. A. & Rocha,B. Lymphocyte homeostasis. Semin. Immunol. 9, 331–337 (1997).

    CAS  PubMed  Google Scholar 

  52. Mombaerts,P. et al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360, 225–231 (1992).

    ADS  CAS  PubMed  Google Scholar 

  53. Kitamura,D., Roes,J., Kuhn,R. & Rajewsky,K. A B-cell deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    ADS  CAS  PubMed  Google Scholar 

  54. Bender,J., Mitchell,T., Kappler,J. & Marrack,P. CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J. Exp. Med. 190, 367–374 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanchot,C. & Rocha,B. The peripheral T cell repertoire: independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur. J. Immunol. 25, 2127–2136 (1995).

    CAS  PubMed  Google Scholar 

  56. Rocha,B., Dautigny,N. & Pereira,P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur. J. Immunol. 19, 905–911 (1989).

    CAS  PubMed  Google Scholar 

  57. Ernst,B., Lee,D. Chang,J. M., Sprent,J. & Surh,C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    CAS  PubMed  Google Scholar 

  58. Berzins,S. P., Boyd,R. L. & Miller,J. F. A. P. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tanchot,C. & Rocha,B. Peripheral selection of T cell repertoires: the role of continuous thymus output. J. Exp. Med. 186, 1099–1106 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bell,E. B., Sparshott,S. M., Drayson,M. T. & Ford,W. L. The stable and permanent expansion of functional T lymphocytes in athymic nude rats after a single injection of mature T cells. J. Immunol. 139, 1379–1384 (1987).

    CAS  PubMed  Google Scholar 

  61. Sprent,J. Lifespans of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 433–438 (1993).

    CAS  PubMed  Google Scholar 

  62. Sprent,J., Schaefer,M., Hurd,M., Surh,C. D. & Ron,Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J. Exp. Med. 174, 717–728 (1991).

    CAS  PubMed  Google Scholar 

  63. Tough,D. F & Sprent,J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    CAS  PubMed  Google Scholar 

  64. von Boehmer,H. & Hafen,K. The life span of naive α/β T cells in secondary lymphoid organs. J. Exp. Med. 177, 891–896 (1993).

    CAS  PubMed  Google Scholar 

  65. Bruno,L., von Boehmer,H. & Kirberg,J. Cell division in the compartment of naive and memory T lymphocytes. Eur. J. Immunol. 26, 3179–3184 (1996).

    CAS  PubMed  Google Scholar 

  66. Kuo,C. T., Veselitis,M. L. & Leiden,J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    CAS  PubMed  Google Scholar 

  67. Oukka,M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  68. Lodolce,J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    CAS  PubMed  Google Scholar 

  69. Nakajima,H., Shores,E. W., Noguchi,M. & Leonard,W. J. The common cytokine receptor γ chain plays an essential role in regulating lymphoid homeostasis. J. Exp. Med. 185, 189–195 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Veis,D. J., Sorenson,C. M., Shutter,J. R. & Korsmeyer,S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    CAS  PubMed  Google Scholar 

  71. Freitas,A. A. & Rocha,B. Peripheral T cell survival. Curr. Opin. Immunol. 11, 152–156 (1999).

    CAS  PubMed  Google Scholar 

  72. Kirber,J., Berns,A. & von Boehmer,H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Google Scholar 

  73. Takeda,S., Rodewald,H.-R., Arakawa,H., Bluethmann,H. & Shimizu,T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    CAS  PubMed  Google Scholar 

  74. Brocker,T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rooke,R., Waltzinger,C., Benoist,C. & Mathis,D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).

    CAS  PubMed  Google Scholar 

  76. Tanchot,C., Lemonnier,F. A., Perarnau,B., Freitas,A. A. & Rocha,B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  77. Murali-Krishna,K. et al. Persistence of memory CD8 T cells in MHC class I deficient mice. Science (in the press).

  78. Nesic,D. & Vukmanovic,S. MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J. Immunol. 160, 3705–3712 (1998).

    CAS  PubMed  Google Scholar 

  79. Bell,E. B., Sparshott,S. M., Drayson,M. T. & Hunt,S. V. The origin of T cells in permanently reconstituted old athymic nude rats. Analysis using chromosome or allotype markers. Immunology 68, 547–556 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McDonagh,M. & Bell,E. B. The survival and turnover of mature and immature CD8 T cells. Immunology 84, 514–520 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pereira,P. & Rocha,B. Post-thymic in vivo expansion of mature αβ T cells. Int. Immunol. 3, 1077–1080 (1991).

    CAS  PubMed  Google Scholar 

  82. Oehen,S. & Brduscha-Riem,K. Naive cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: A pitfall for T cell memory studies? Eur. J. Immunol. 29, 608–614 (1999).

    CAS  PubMed  Google Scholar 

  83. Sprent,J., Surh,C. D. & Tough,D. Fate of T and B cells transferred to SCID mice. Res. Immunol. 145, 328–331 (1994).

    CAS  PubMed  Google Scholar 

  84. Bell,E. B. & Sparshott,S. M. The peripheral T-cell pool: regulation by non-antigen induced proliferation? Semin. Immunol. 9, 347–353 (1997).

    CAS  PubMed  Google Scholar 

  85. Mackall,C. L. et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J. Immunol. 156, 4609–4616 (1996).

    CAS  PubMed  Google Scholar 

  86. Viret,C., Wong,F. S. & Janeway,C. S. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  87. Beutner,U. & MacDonald,H. R. TCR–MHC class II interaction is required for peripheral expansion of CD4 cells in a T cell-deficient host. Int. Immun. 10, 305–310 (1998).

    CAS  PubMed  Google Scholar 

  88. Kieper,W. C. & Jameson,S. C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl Acad. Sci. USA (in the press).

  89. Goldrath,A. W. & Bevan,M. J. Low affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Markiewicz,M. A. et al. Long-term T cells memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc. Natl Acad. Sic. USA 95, 3065–3070 (1998).

    ADS  CAS  Google Scholar 

  91. Garcia,S., DiSanto,J. & Stockinger,B. Following the development of a CD4 T cell immune response in vivo: from activation to memory formation. Immunity 11, 163–171 (1999).

    CAS  PubMed  Google Scholar 

  92. Swain,S., Hui,H. & Huston,G. Class II-independent generation of CD4 memory T cells from effectors. Science (in the press).

  93. Butz,E. A. & Bevan,M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Murali-Krishna,K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    CAS  PubMed  Google Scholar 

  95. Busch,D. H., Pilip,I. M., Vijh,S. & Pamer,E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    CAS  PubMed  Google Scholar 

  96. Callan,M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cose,S. C., Jones,C. M., Wallace,M. E., Heath,W. R. & Carbone,F. R. Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur. J. Immunol. 27, 2310–2316 (1997).

    CAS  PubMed  Google Scholar 

  98. Flynn,K. J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    CAS  PubMed  Google Scholar 

  99. Zimmermann,C. & Pircher,H. A novel approach to visualize polyclonal virus-specific CD8 T cells in vivo. J. Immunol. 162, 5178–5182 (1999).

    CAS  PubMed  Google Scholar 

  100. Busch,D. H., Pilip,I. & Pamer,E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med. 188, 61–70 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jacob,J. & Baltimore,D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    ADS  CAS  PubMed  Google Scholar 

  102. Razvi,E. S., Jiang,Z., Woda,B. A. & Welsh,R. M. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, Ipr, and Bcl-2-transgenic mice. Am. J. Pathol. 147, 79–91 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sallusto,F., Lenig,D., Förster,R., Lipp,M. & Lanzavecchia,A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldrath, A., Bevan, M. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999). https://doi.org/10.1038/46218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/46218

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing