Skip to main content
Log in

Routine screening for microdeletions by FISH in 77 patients suspected of having Prader-Willi or Angelman syndromes using YAC clone 273A2 (D15S10)

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

About 70% of patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) have a common interstitial de novo microdeletion encompassing paternal (PWS) or maternal (AS) loci D15S9 to D15S12. Most of the non-deletion PWS patients and a small number of non-deletion AS patients have a maternal or paternal uniparental disomy (UPD)15, respectively. Other chromosome 15 rearrangements and a few smaller atypical deletions, some of the latter being associated with an abnormal methylation pattern, are rarely found. Molecular and fluorescence in situ hybridization (FISH) analysis have both been used to diagnose PWS and AS. Here, we have evaluated, in a typical routine cytogenetic laboratory setting, the efficiency of a diagnostic strategy that starts with a FISH deletion assay using Alu-PCR (polymerase chain reaction)-amplified 1315S10-positive yeast artificial chromosome (YAC) 273A2. We performed FISH in 77 patients suspected of having PWS (n = 66) or AS (n = 11) and compared the results with those from classical cytogenetics and wherever possible with those from DNA analysis. A FISH deletion was found in 16/66 patients from the PWS group and in 3/11 patients from the AS group. One example of a centromere 15 co-hybridization performed in order to exclude cryptic translocations or inversions is given. Of the PWS patients, 14 fulfilled Holm's criteria, but two did not. DNA analysis confirmed the commmon deletion in all patients screened by the D15S63 methylation test and in restriction fragment length polymorphism dosage blots. In 3/58 non-deletion patients, other chromosomal aberrations were found. Of the non-deleted group, 27 subjects (24 PWS, 3 AS) were tested molecularly, and three patients with an uniparental methylation pattern were found in the PWS group. The other 24/27 subjects had neither a FISH deletion nor uniparental methylation, but two had other cytogenetic aberrations. Given that cytogenetic analysis is indispensable in most patients, we find that the FISH deletion assay with YAC 273A2 is an efficient first step for stepwise diagnostic testing and mutation-type analysis of patients suspected of having PWS or AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angelman H (1965) Puppet children: a report on three cases. Dev Med Child Neurol 7: 681–683

    Google Scholar 

  • Bettio D, Rizzi N, Giardino D, Grugni G, Briscioli V, Selicomi A, Carnevale F, Larizza L (1995) FISH analysis in Prader-Willi and Angelman syndrome patients. Am J Med Genet 56: 224–228

    Article  CAS  PubMed  Google Scholar 

  • Buiting K, Dittrich B, Robinson WP, Guitart M, Abeliovich D, Lerer I, Horsthemke B (1994) Detection of aberrant DNA methylation in unique Prader-Willi syndrome patients and its diagnostic implications. Hum Mol Genet 3: 893–895

    CAS  PubMed  Google Scholar 

  • Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 9: 395–400

    Article  CAS  PubMed  Google Scholar 

  • Butler MG (1990) Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet 35: 319–332

    Article  CAS  PubMed  Google Scholar 

  • Butler MG (1995) High resolution chromosome analysis and fluorescence in situ hybridization in patients referred for PraderWilli or Angelman syndrome (letter). Am J Med Genet 56: 420–422

    Article  CAS  PubMed  Google Scholar 

  • Buxton JL, Chan CT, Gilbert H, Clayton Smith J, Burn J, Pembrey M, Malcolm S (1994) Angelman syndrome associated with a maternal 15g11–13 deletion of less than 200 kb. Hum Mol Genet 3: 1409–1413

    CAS  PubMed  Google Scholar 

  • Carle GF, Olson MV (1987) Orthogonal-field-alternation gel electrophoresis. In: Wu R (ed) Methods in enzymology. Academic Press, San Diego, pp 468–482

    Google Scholar 

  • Chan CT, Clayton Smith J, Cheng XJ, Buxton J, Webb T, Pembrey ME, Malcolm S (1993) Molecular mechanisms in Angelman syndrome: a survey of 93 patients. J Med Genet 30: 895–902

    CAS  PubMed  Google Scholar 

  • Clayton Smith J (1993) Clinical research on Angelman syndrome in the United Kingdom: observations on 82 affected individuals. Am J Med Genet 46: 12–15

    CAS  PubMed  Google Scholar 

  • Delach JA, Rosengren SS, Kaplan L, Greenstein RM, Cassidy SB, Benn PA (1994) Comparison of high resolution chromosome banding and fluorescence in situ hybridization (FISH) for the laboratory evaluation of Prader-Willi syndrome and Angelman syndrome. Am J Med Genet 52: 85–91

    Article  CAS  PubMed  Google Scholar 

  • Dittrich B, Robinson WP, Knoblauch H, Buiting K, Schmidt K, Gillessen Kaesbach G, Horsthemke B (1992) Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15g11–13. Hum Genet 90: 313–315

    Article  CAS  PubMed  Google Scholar 

  • Dittrich B, Buiting K, Gross S, Horsthemke B (1993) Characterization of a methylation imprint in the Prader-Willi syndrome chromosome region. Hum Mol Genet 2: 1995–1999

    CAS  PubMed  Google Scholar 

  • Driscoll DJ, Waters MF, Williams CA, Zori RT, Glenn CC, Avidano KM, Nicholls RD (1992) A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomcs 13: 917–924

    CAS  Google Scholar 

  • Gillessen Kaesbach G, Gross S, Kaya Westerloh S, Passarge E, Horsthemke B (1995) DNA methylation based testing of 450 patients suspected of having Prader-Willi syndrome. J Med Genet 32: 88–92

    CAS  PubMed  Google Scholar 

  • Glenn CC, Nicholls RD, Robinson WP, Saitoh S, Niikawa N, Schinzel A, Horsthemke B, Driscoll DJ (1993) Modification of 15g11g13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet 2: 1377–1382

    CAS  PubMed  Google Scholar 

  • Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46: 857–873

    CAS  PubMed  Google Scholar 

  • Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F (1993) Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91: 398–402

    CAS  PubMed  Google Scholar 

  • Hulten M, Armstrong S, Challinor P, Gould C, Hardy G, Leedham P, Lee T, McKeown C (1991) Genomic imprinting in an Angelman and Prader-Willi translocation family (letter). Lancet 338:638–639

    CAS  PubMed  Google Scholar 

  • Kennerknecht I (1992) Differentiated recurrence risk estimations in the Prader-Willi syndrome. Clin Genet 41: 303–308

    CAS  PubMed  Google Scholar 

  • Knoll JH, Nicholls RD, Magenis RE, Graham JM Jr, Lalande M, Latt SA (1989) Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet 32: 285–290

    Article  CAS  PubMed  Google Scholar 

  • Kuwano A, Mutirangura A, Dittrich B, Buiting K, Horsthemke B, Saitoh S, Niikawa N, Ledbetter SA, Greenberg F, Chinault AC, et al (1992) Molecular dissection of the Prader-Willi/Angelman syndrome region (15g11–13) by YAC cloning and FISH analysis [erratum appeared in Hum Mol Genet 1: 784]. Hum Mol Genet 1: 417–425

    CAS  PubMed  Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 6633–6637

    CAS  PubMed  Google Scholar 

  • Ledbetter DH, Riccardi VM, Aihart SD, Strobel RJ, Keenan BS, Crawford JD (1981) Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 304: 325–329

    CAS  PubMed  Google Scholar 

  • Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13: 826–828

    Article  CAS  PubMed  Google Scholar 

  • Lichter P, Cremer T (1992) Chromosome analysis by nonisotopic in situ hybridization. In: Rooney DA, Czepulkowski BH (eds) Human cytogenetics, 2nd edn. IRL Press, Oxford New York Tokyo, pp 157–192

    Google Scholar 

  • Lichter P, Ried T (1994) Molecular analysis of chromosome aberrations. In situ hybridization. In: Gosden JR (ed) Chromosome analysis protocols. Humana Press, Totowa, NJ pp 449–478

    Google Scholar 

  • Malcolm S, Clayton Smith J, Nichols M, Robb S, Webb T, Armour JA, Jeffreys AJ, Pembrey ME (1991) Uniparental paternal disomy in Angelman's syndrome. Lancet 337: 694–697

    Article  CAS  PubMed  Google Scholar 

  • Mascari MJ, Gottlieb W, Rogan PK, Butler MG, Waller DA, Armour JA, Jeffreys AJ, Ladda RL, Nicholls RD (1992) The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N Engl J Med 326: 1599–1607

    CAS  PubMed  Google Scholar 

  • Mutirangura A, Greenberg F, Butler MG, Malcolm S, Nicholls RD, Chakravarti A, Ledbetter DH (1993) Multiplex PCR of three dinucleotide repeats in the Prader-Willi/Angelman critical region (15g11g13): molecular diagnosis and mechanism of uniparental disomy. Hum Mol Genet 2: 143–151

    CAS  PubMed  Google Scholar 

  • Nicholls RD (1993) Genomic imprinting and candidate genes in the Prader-Willi and Angelman syndromes [erratum appeared in Curr Opin Genet Dev 3: 802]. Curr Opin Genet Dev 3: 445–456

    CAS  PubMed  Google Scholar 

  • Pembrey M, Fennell SJ, Berghe J van den, Fitchett M, Summers D, Butler L, Clarke C, Griffiths M, Thompson E, Super M, et al (1989) The association of Angelman's syndrome with deletions within 15g11–13. J Med Genet 26: 73–77

    CAS  PubMed  Google Scholar 

  • Prader A, Labhart A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus, und Oligophrenie nach myotonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261

    Google Scholar 

  • Reis A, Dittrich B, Greger V, Buiting K, Lalande M, Gillessen Kaesbach G, Anvret M, Horsthemke B (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet 54: 741–747

    CAS  PubMed  Google Scholar 

  • Robinson WP, Bottani A, Xie YG, Balakrishman J, Binkert F, Machler M, Prader A, Schinzel A (1991) Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am J Hum Genet 49: 1219–1234

    CAS  PubMed  Google Scholar 

  • Schinzel AA, Brecevic L, Bemasconi F, Binkert F, Berthet F, Wuilloud A, Robinson WP (1994) Intrachromosomal triplication of 15g11g13. J Med Genet 31: 798–803

    CAS  PubMed  Google Scholar 

  • Smith A, Robson L, Neumann A, Mulcahy M, Chabros V, Deng ZM, Woodage T, Trent RJ (1993) Fluorescence in-situ hybridisation and molecular studies used in the characterisation of a Robertsonian translocation (13g15q) in Prader-Willi syndrome. Clin Genet 43: 5–8

    CAS  PubMed  Google Scholar 

  • Stadler DD (1988) Nutritional management. In: Greenswag LR, Alexander RC (eds) Management of Prader-Willi syndrome. Springer, Berlin Heidelberg New York, pp 76–98

    Google Scholar 

  • Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL (1994) Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 8: 52–58

    Article  CAS  PubMed  Google Scholar 

  • Tantravahi U, Nicholls RD, Stroh H, Ringer S, Neve RL, Kaplan L, Wharton R, Wurster Hill D, Graham JM Jr, Cantu ES, et al (1989) Quantitative calibration and use of DNA probes for investigating chromosome abnormalities in the Prader-Willi syndrome. Am J Med Genet 33: 78–87

    Article  CAS  PubMed  Google Scholar 

  • Webb T, Clayton Smith J, Cheng XJ, Knoll JH, Lalande M, Pembrey ME, Malcolm S (1992) Angelman syndrome with a chromosomal inversion 15 inv(p11g13) accompanied by a deletion in 15g11q13. J Med Genet 29: 921–924

    CAS  PubMed  Google Scholar 

  • Webb T, Malcolm S, Pembrey ME, Clayton Smith J (1993) Inheritance of parental chromosomes 15 in Angelman syndrome-implications for the family. Genet Courts 4: 1–6

    CAS  Google Scholar 

  • Webb T, Clarke D, Hardy CA, Kilpatrick MW, Corbett J, Dahlitz M (1995) A clinical, cytogenetic, and molecular study of 40 adults with the Prader-Willi syndrome. J Med Genet 32: 181–185

    CAS  PubMed  Google Scholar 

  • Weyerts LK, Wiley JE, Loud KM, Smith AJW, Kushnick T (1994) Familial cryptic translocation in Angelman syndrome. Am J Hum Genet 55: A122

    Google Scholar 

  • Williams CA, Angelman H, Clayton-Smith J, Driscoll DJ, Hendrickson JE, Knoll JHM, Magenis RE, Schinzel A, Wagstaff J, Whidden EM, Zori RT (1995) Angelman syndrome: consensus for diagnostic criteria. Am J Med Genet 56: 237–238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdel, M., Köchl, S., Utermann, B. et al. Routine screening for microdeletions by FISH in 77 patients suspected of having Prader-Willi or Angelman syndromes using YAC clone 273A2 (D15S10). Hum Genet 97, 784–793 (1996). https://doi.org/10.1007/BF02346190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02346190

Keywords

Navigation