Skip to main content
Log in

Oxidative stress and neurodegenerative disorders

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Oxidative insults, whether over-excitation, excessive release of glutamate or ATP caused by stroke, ischemia or inflammation, exposure to ionizing radiation, heavy-metal ions or oxidized lipoproteins may initiate various signaling cascades leading to apoptotic cell death and neurodegenerative disorders. Among the various reactive oxygen species (ROS) generated in the living organism, hydroxyl and peroxynitrite are the most potent and can damage proteins, lipids and nucleic acids. It appears that some natural antioxidants (tocopherol, ascorbic acid and glutathione) and defense enzyme systems (superoxide dismutase, catalase and glutathione peroxidase) may provide some protection against oxidative damage. Recent findings indicate several polyphenols and antioxidant drugs (probucol, seligilline) are effective in protecting the cells from ROS attack. Further development of these antioxidant molecules may be of value in preventing the development of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allsopp TE, Wyatt S, Peterson HF, Davies AM. The protooncogene Bcl 2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73:295–307;1993.

    Google Scholar 

  2. Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. All Z Psychiatr 64:146–148;1907.

    Google Scholar 

  3. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922;1993.

    Google Scholar 

  4. Arai H, Higuchi S, Sasaki H. ApoE genotyping and cerebrospinal fluid tau protein: Implication for the clinical diagnosis of Alzheimer's disease. Gerontology 43 (suppl 1):2–10;1997.

    Google Scholar 

  5. Bartlett D, Church DF, Bounds PL, Koppenol WH. The kinetics of the oxidation ofL-ascorbic acid by peroxynitrite. Free Radic Biol Med 18:85–92;1995.

    Google Scholar 

  6. Beal MF. Aging, energy and oxidative stress in neurodegenerative diseases. Neurol 38:357–366;1995.

    Google Scholar 

  7. Beckman JS. Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury. Ann NY Acad Sci 738:69–75;1994.

    Google Scholar 

  8. Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite. Implication for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624;1990.

    Google Scholar 

  9. Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827;1994.

    Google Scholar 

  10. Behl C, Sagara Y. Mechanism of amyloid beta protein-induced neuronal cell death: Current concepts and future perspectives. J Neural Transm 49 (suppl):125–134;1997.

    Google Scholar 

  11. Bennister JV, Ballanate P, Sema MC, Thornalley PJ, Rossi F. An EPR study of the production of superoxide radicals by neutrophil NADPH oxidase. FEBS Lett 145:323–326;1982.

    Google Scholar 

  12. Borovic S, Zarkovic N, Wildburger R, Tatzber F, Jurin M. Posttraumatic differences in the titer of autoantibodies against oxidized low density lipoproteins (OLDL) in the sera of patients with bone fracture and traumatic brain injury. Periodicum Biol 97:209–293;1995.

    Google Scholar 

  13. Borovitskaya AE, Evtushenko VI, Sabol SL. 1 Gamma radiation-induced cell death in the fetal rat brain possesses molecular characteristics of apoptosis and is associated with specific messenger RNA elevation. Mol Brain Res 35:19–30;1996.

    Google Scholar 

  14. Boveries A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbasic oxygen. Biochem J 134:707–716;1973.

    Google Scholar 

  15. Brawn K, Fridovich I. DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys 206:414–419;1981.

    Google Scholar 

  16. Brierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. Arch Neurol 52:81–88;1995.

    Google Scholar 

  17. Brown GC. Nitric oxide regulates mitochondrial respiration and cell function by inhibitory cytochrome oxidase. FEBS Lett 369:136–139;1995.

    Google Scholar 

  18. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10;1994.

    Google Scholar 

  19. Chanvitayapongs S, Draczynska-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport 8:1499–1502;1997.

    Google Scholar 

  20. Chen YM. Excitotoxicity in neurodegenerative Disorders, PhD thesis, University of Missouri-Columbia, 1998.

  21. Chen YM, Sun AY. Activation of transcription factor AP-1 by extracellular ATP in PC12 cells. Neurochem Res 23:543–550;1998.

    Google Scholar 

  22. Cheng Y. Mechanisms of KA-induced neuronal excitotoxicity, PhD Thesis, pp 178; University of Missouri, Columbia, MO; 1993.

    Google Scholar 

  23. Cheng Y, Chen M, Wixom P, Sun AY. Extracellular ATP may induce neuronal degeneration by a free-radical mechanism. Ann NY Acad Sci 738:431–435;1994.

    Google Scholar 

  24. Cheng Y, Chen M, James-Kracke MR, Wixom P, Sun AY. Enhanced lipid peroxidation by extracellular ATP in PC12 cells. Neurochem Res 21:27–33;1996.

    Google Scholar 

  25. Chiueh CC, Wu RM, Mohanakumar KP, Sternberger LM, Krishna G, Obata T, Murphy DL. In vivo generation of hydroxyl radical and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann NY Acad Sci 738:25–36;1994.

    Google Scholar 

  26. Choi DW. Excitotoxic cell death. J Neurobiol 23:1261–1276;1992.

    Google Scholar 

  27. Choi DW. Calcium: Still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60;1995.

    Google Scholar 

  28. Chung MI, Teng CM, Cheng KL, Ko FN, Lin CN. An anti-platelet principle ofVeratrum formosanum. Planta Med 58:274–276;1992.

    Google Scholar 

  29. Cohen G, Farooqui R, Kesler N. Parkinson's disease: A new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94:4890–4894;1997.

    Google Scholar 

  30. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. The regional distribution of iron in aging and Alzheimer's disease. J Neurosci Res 31:327;1992.

    Google Scholar 

  31. Connor JR, Menzies SL, St Marin SM, Mufson EJ. A histochemical study of iron, transferrin and ferritin in Alzheimer's disease brain. J Neurosci Res 31:75–83;1992.

    Google Scholar 

  32. Corder EH, Soundes AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923;1993.

    Google Scholar 

  33. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695;1993.

    Google Scholar 

  34. Crumrine RC, Thomas AL, Morgan PF. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891;1994.

    Google Scholar 

  35. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262:9895–9901;1987.

    Google Scholar 

  36. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6374;1991.

    Google Scholar 

  37. Deckwerth TL, Johnson EM, Jr. Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 123:1207–1222;1993.

    Google Scholar 

  38. Desole MS, Sciola L, Delogue MR, Siacana S, Migheli R, Miele E. Role of oxidative stress in the manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells. Neurochem Int 31:169–176;1997.

    Google Scholar 

  39. Dexter DT, Carter CJ, Wekks FR. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52:381–389;1989.

    Google Scholar 

  40. Dexter DT, Jenner P, Schapira AH, Marsden CD. Alterations in level of iron, ferritin, and other trace metals in neuronal degenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 32 (suppl S9):4–100;1992.

    Google Scholar 

  41. Dexter DT, Sian J, Rose S, et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44;1994.

    Google Scholar 

  42. Dickson DW, Lee SC, Mattiace L, Yen SHC, Brosnan C. Microglia and cytokines in neurological disease with special reference to AIDS and Alzheimer's disease. Glia 7:75–83;1993.

    Google Scholar 

  43. Draczynska-Lusiak B, Doung A, Sun A. Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer's disease. Mol Chem Neuropathol 33:139–148;1998.

    Google Scholar 

  44. Draczynska-Lusiak B, Chen YM, Sun AY. Oxidized lipoproteins activate NF-κB binding activity and apoptosis in PC12 cells. Neuroreport 9:527–532;1998.

    Google Scholar 

  45. Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. N Neurochem 63:584–591;1994.

    Google Scholar 

  46. Eckey R, Menschikowski M, Lattke P, Jaross W. Minimal oxidation and storage of low density lipoprotein result in an increased susceptibility to phospholipid hydrolysis by phospholipase A2. Atherosclerosis 132:165–176;1997.

    Google Scholar 

  47. France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: A putative mechanism for neuronal death in Parkinson's disease. J Neurochem 69:1612–1621;1997.

    Google Scholar 

  48. Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human low density lipoprotein oxidation by resveratrol. Lancet 341:1103–1104;1993.

    Google Scholar 

  49. Freeman BA, Crapo JD. Free radical and tissue injury. Lab Invest 47:412–426;1982.

    Google Scholar 

  50. Fridovich I. Superoxide dismutase. Science 44:147–159;1975.

    Google Scholar 

  51. Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol 54:507–536;1992.

    Google Scholar 

  52. Gerlach M, Youdim MBH, Reiderer P. Pharmacology of seligeline. Neurology 47 (suppl 3):S137–143;1996.

    Google Scholar 

  53. Glenner GG, Wong CN. Alzheimer's disease: Initial report of the purification and characterization on a novel cerebrovascular amyloid protein. Biochem Biophys Res Comman 120:885–890;1984.

    Google Scholar 

  54. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated LDL, producing massive cholesterol deposition. Proc Natl Acad Sci USA 96:333–337;1979.

    Google Scholar 

  55. Goldstein JL, Basu SK, Brown MS. Receptor mediated endocytosis of low density lipoprotein in cultured cells. Methods Enzymol 98:241–261;1983.

    Google Scholar 

  56. Good PF, Perl D, Bigrer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: A laser microprobe study. Ann Neurol 31:286–292;1992.

    Google Scholar 

  57. Gorman AM, McGowan A, O'Neill C, Cotter T. Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci 139 (suppl):45–52;1996.

    Google Scholar 

  58. Graham DG. Oxidative pathway for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643;1978.

    Google Scholar 

  59. Guillaume D, Bertrand P, Dea D, Davignon J, Poirier J. Apolipoprotein E and low-density lipoprotein binding and internalization in primary culture of rat astrocytes: Isoform specific alterations. J Neurochem 66:2410–2418;1997.

    Google Scholar 

  60. Gunter TE, Gunter KK, Shen SS, Gavin CE. Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol 267C:313–339;1994.

    Google Scholar 

  61. Haas C, Koo EH, Mellon A, Selkoe DJ. Targeting of cell surface β-amyloid precursor protein to lysosomes: Alternative processing into amyloid bearing fragments. Nature 357:500–503;1992.

    Google Scholar 

  62. Haas C, Schlossmacher MG, Hung AY, Vigo-Pelbray C, Mellon A, Ostaszewski B, Liebergurg I, Koo E, Schenk D, Teplow D, Selkoe DJ. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325;1992.

    Google Scholar 

  63. Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 91:14S-22S;1991.

    Google Scholar 

  64. Halliwell B. Free radicals and antioxidants: A personal view. Nutr Rev 52:253–265;1995.

    Google Scholar 

  65. Halliwell B, Gutteridge JM. Oxygen radicals and the nervous system. Trends Neurosci 6:22–26;1985.

    Google Scholar 

  66. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 186:1–85;1990.

    Google Scholar 

  67. Ham J, Bahyi C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL. A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14:927–939;1995.

    Google Scholar 

  68. Healing G, Gower J, Fuller B, Green C. Intracellular iron redistribution. An important determinant of reperfusion damage to rabbit kidneys. Biochem Pharmacol 39:1239–1245;1990.

    Google Scholar 

  69. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer's disease. Proc Natl Acad Sci USA 92:4402–4406;1994.

    Google Scholar 

  70. Hertel C, Terzi E, Hauser N, Jakob Rotne R, Seelig J, Kemp JA. Inhibition of the electrostatic interaction between β-amyloid peptide and membranes prevents β-amyloid-induced toxicity. Proc Natl Acad Sci USA 94:9412–9416;1997.

    Google Scholar 

  71. Hirsch EC, Grabiel AM, Agid Y. Melanised dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345–348;1988.

    Google Scholar 

  72. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 17:31–108;1994.

    Google Scholar 

  73. Hope BT, Kelz MB, Duman RS, Nestler EJ. Chronic electroconvulsive seizure (ECS) treatment results in expression of long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci 14:4318–4328;1994.

    Google Scholar 

  74. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139;1997.

    Google Scholar 

  75. Iwata M, Mukai M, Nakai Y, Iseki R. Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes. J Immunol 149:3302–3308;1992.

    Google Scholar 

  76. Jacobson MG, Burne JF, Raff MC. Programmed cell death and Bcl-2 protection in the absence of nucleus. EMBO J 13:1899–1910;1994.

    Google Scholar 

  77. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Bescher WW, Fong HHS, Farnswoth NR, Kinghorn AD, Mehti GR, Moon RC, Pezzuto JM. Cancer preventive activity of resveratrol, a natural product derived from grape. Science 275:218–220;1997.

    Google Scholar 

  78. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47 (6 suppl 3):S161-S170;1996.

    Google Scholar 

  79. Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am J Pathol 135:309–320;1989.

    Google Scholar 

  80. Kaminska B, Filipkowski RK, Zurkoska G, Lason W, Przenlocki R, Kaczmareki L. Dynamic changes in the composition of the AP-1 transcription factor DNA-binding activity in rat brain following kainate-induced seizures and cell death. Eur J Neurosci 6:1558–1566;1994.

    Google Scholar 

  81. Kapiotis S, Hermann M, Held I, Seelos C, Ehringer IT, Gmeiner BMK. Genistein, the dietary-derived angiotenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17:2868–2874;1997.

    Google Scholar 

  82. Kasof GM, Mandelzys A, Maika SD, Hammer RE, Cuirau T, Morgan JC. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neurosci 15:4238–4247;1995.

    Google Scholar 

  83. Keller N, Kindy MS, Holtsberg FW, St. Clair DK, Yen H-C, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697;1998.

    Google Scholar 

  84. Kim-Han J, Sun AY. Protection of PC12 cells by glutathione peroxidase inL-DOPA induced cytotoxicity. Free Radic Biol Med 25:512–518;1998.

    Google Scholar 

  85. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome C from mitochondria: A primary site for the Bcl-2 regulation of apoptosis. Science 275:1132–1136;1997.

    Google Scholar 

  86. Kong J, Lemaire HG, Unterbeck A et al.: The precursor of Alzheimer's disease amyloid A4 resembles a cell surface receptor. Nature 325:733–736;1987.

    Google Scholar 

  87. Kroemer G. Mitochondrial implication in apoptosis — towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 4:443–456;1997.

    Google Scholar 

  88. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 18:44–51;1997.

    Google Scholar 

  89. Kumura E, Yoshimine T, Iwatsuki KI, Yamenaka K, Taacka S, Hayakawa T, Shiza T, Kosaka H. Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am J Physiol 270:C748-C752;1996.

    Google Scholar 

  90. Ladecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139;1997.

    Google Scholar 

  91. LaDu MJ, Falduto MT, Menelli AM, Reardon CA, Getz GS, Frail DE. Isoform-specific binding of apolipoprotein E to β-amyloid. J Biol Chem 269:23403–23406;1994.

    Google Scholar 

  92. LaDu MJ, Luken JR, Reardon CA, Getz GS. Association of human, rat and rabbit apolipoprotein E with β-amyloid. J Neurosci Res 49:9–18;1997.

    Google Scholar 

  93. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537;1993.

    Google Scholar 

  94. Lai CT, Yu PH.R(−)-deprenyl potentiates dopamine-induced cytotoxicity toward catecholaminergic neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 142:186–191;1997.

    Google Scholar 

  95. Lerma J, Morales M. Vicente MA, Herreras O. Glutamate receptors of the kainate type and synaptic transmission. Trends Neurosci 20:9–12;1997.

    Google Scholar 

  96. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 330:613–622;1994.

    Google Scholar 

  97. Liu LF, Brachova L, Civin WH, Rogers J. Inflammation, A-beta deposition and neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration. J Neuropathol Exp Neurol 55:1083–1088;1996.

    Google Scholar 

  98. Liu X, Kim CM, Yang J, Jemmerson R, Wang X. Induction of apoptosis program in cell-free extracts: Requirement for dATP and cytochrome C. Cell 86:147–157;1996.

    Google Scholar 

  99. Lockhart BP, Bemcourt C, Junien JL, Privat A. Inhibitors of free radical formation fail to attenuate direct b-amyloid peptide-mediated neurotoxicity in rat hippocampal cultures. J Neurosci Res 39:494–505;1994.

    Google Scholar 

  100. Loiacono RE, Beart PM. Hippocampal lesions induced by microinjection of the nitric oxide donor nitroprusside. Eur J Pharmacol 216:331–333;1992.

    Google Scholar 

  101. Lovestone S, Anderton BH, Hartley C, Jensen TG, Horgeusen AL. The intracellular fate of apolipoprotein E is tau dependent and apo allele-specific. Neuroreport 7:1005–1008;1996.

    Google Scholar 

  102. Lucas DR, Newhouse JP. The toxic effect of sodiumL-glutamate on the inner layers of the retina. Arch Ophthalmol 58:193–201;1997.

    Google Scholar 

  103. Lustig HS, von Brauchitsch KL, Chan J, Greenberg DA. Ethanol and excitotoxicity in cultured cortical neurons: Differential sensitivity of N-methyl-D-aspartate and sodium nitroprusside toxicity. J Neurochem 59:2193–2200;1992.

    Google Scholar 

  104. Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 68:255–264;1997.

    Google Scholar 

  105. Markesberry WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147;1997.

    Google Scholar 

  106. Mattson MP, Tomaselli KJ, Tydel RE. Calcium destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res 621:35–49;1993.

    Google Scholar 

  107. Mattson MP. Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 65:1740–1751;1995.

    Google Scholar 

  108. McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760;1994.

    Google Scholar 

  109. McIntosh LF, Trush MA, Troncoso JC. Increased susceptibility of Alzheimer's disease temporal cortex to oxygen free radical-mediated process. Free Radic Biol Med 23:183–190;1997.

    Google Scholar 

  110. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616;1993.

    Google Scholar 

  111. Meyer AS, Heinonen M, Frankel EN. Antioxidant interaction of catechin, cyanidin, caffeic acid, quercatin and ellagic acid on human LDL oxidation. Food Chem 61:71–75;1998.

    Google Scholar 

  112. Minotti G, Aust SD. Redoxcycling of iron and lipid peroxidation. Lipids 27:219–226;1992.

    Google Scholar 

  113. Mitchell IJ, Lawson S, Moser B, Laidlaw SM, Copper AJ, Walkinshaw G, Waters CM. Glutamate induced apoptosis results in a loss of striatal neurons in the Parkinsonian rat. Neuroscience 63:1–5;1994.

    Google Scholar 

  114. Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237;1995.

    Google Scholar 

  115. Muir KW, Lees KR. Clinical experience with excitatory amino acid antagonist drugs. Stroke 26:503–513;1995.

    Google Scholar 

  116. Multhaup G, Rappert T, Schlicksupp A, Hesse L, Beher D, Masters CC, Beyrenther K. Reactive oxygen species and Alzheimer's disease. Biochem Pharmacol 54:533–539;1997.

    Google Scholar 

  117. Nakano M, Cenzil F, Mizuno R, Gotoh S. Age-related changes in the lipofuscin accumulation of brain and heart. Gerontology 41 (suppl 2):69–79;1995.

    Google Scholar 

  118. Nappi AJ, Vass E. Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid and selective catechols. Biochim Biophys Cata 1336:295–301;1997.

    Google Scholar 

  119. Nowicki JP, Duval D, Poignet H, Scatton B. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204:339–340;1991.

    Google Scholar 

  120. Olanow CW. A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444;1993.

    Google Scholar 

  121. O'Neill LAJ, Kaltschmidt C. NF-κB: A crucial transcription factor for glial and neuronal cell formation. Trends Neurosci 20:252–258;1997.

    Google Scholar 

  122. Patel M, Day BJ, Crapo JD, Fridovich I, McNamara JO. Requirement for superoxide in excitotoxic cell death. Neuron 16:345–355;1996.

    Google Scholar 

  123. Pennypacker KR, Hong J, McMillian MK. Pharmacological regulation of AP-1 transcription factor DNA binding activity. FASEB J 8:475–478;1994.

    Google Scholar 

  124. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: Back to the future. FEBS Lett 396:7–13;1996.

    Google Scholar 

  125. Pike CJ, Ramezan-Arab N, Cotman CW. β-Amyloid neurotoxicity in vitro: Evidence of oxidative stress but not protection by antioxidants. J Neurochem 69:1601–1611;1997.

    Google Scholar 

  126. Pitas RE, Bayles JK, Lee SH, Foss D, Mahley RW. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917:148–161;1984.

    Google Scholar 

  127. Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. Lipoproteins and their receptors in the central nervous system. J Biol Chem 262:14352–14360;1987.

    Google Scholar 

  128. Pluta R, Barcikowska M, Debicki G, Ryba M, Januszewski S. Changes in amyloid precursor proteins and apolipoprotein E immunoreactivity following ischemic injury in rat with long-term survival: Influence of idebenone treatment. Neurosci Lett 232:95–98;1997.

    Google Scholar 

  129. Poirier J. Apolipoprotein E in the brain and its role in Alzheimer's disease. J Psychiat Neurosci 21:128–134;1996.

    Google Scholar 

  130. Pollard H, Carrient-Marlangue C, Cantagrel S, Represa A, Robain O, Moreau J, Ben-Ari Y. Kainate induced apoptosis cell death in hippocampal neurons. Neuroscience 63:7–18;1994.

    Google Scholar 

  131. Radi R, Rodriguez M, Castro L, Telleri RC. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95;1994.

    Google Scholar 

  132. Riedel G. Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci 19:219–224;1996.

    Google Scholar 

  133. Riederer P, Sofic E, Rausch W. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brain. J Neurochem 52:515–521;1989.

    Google Scholar 

  134. Rothman RJ, Serroni A, Farber JL. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Mol Pharmacol 42:703–710;1992.

    Google Scholar 

  135. Sagara Y, Dargasch R, Klier FG, Schubert D, Behl C. Increased antioxidant enzymes activity in amyloid β protein-resistant cells. J Neurosci 16:497–505;1996.

    Google Scholar 

  136. Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett 236:406–410;1988.

    Google Scholar 

  137. Sandoval M, Zhang XJ, Liu X, Mannick EE, Clark DA, Miller MJS. Peroxynitrite-induced apoptosis in T84 and RAW 264.7 cells: Attenuation byL-ascorbic acid. Free Radic Biol Med 22:489–495;1997.

    Google Scholar 

  138. Schapira AHV. Evidence for mitochondrial disfunction in Parkinson's disease — a critical appraisal. Mov Disord 9:125–138;1994.

    Google Scholar 

  139. Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174:193–197;1997.

    Google Scholar 

  140. Schulze-Osthoff K, Los M, Bauerle PA. Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem Pharmacol 50:735–741;1995.

    Google Scholar 

  141. Sessa WC, Hecker M, Mitchell JA, Vane JR. The metabolism ofL-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor:L-Glutamine inhibits the generation ofL-arginine by cultured endothelial cells. Proc Natl Acad Sci USA 87:8607–8611;1990.

    Google Scholar 

  142. Seubert P, Urgo-Pelfrey C, Esch F, et al. Isolation and quantitation of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327;1992.

    Google Scholar 

  143. Shaw PJ, Ince PG. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol 247 (suppl 2):S3-S14;1997.

    Google Scholar 

  144. Shinobu LA, Beal MF. The role of oxidative processes and metal ions in aging and Alzheimer's disease. In: Connor JR, ed. Metals and Oxidative Damage in Neurological Disorders. New York, Plenum Press, 237–275;1997.

    Google Scholar 

  145. Shohami E, Beit-Yannai E, Horowitz M, Kohen R. Oxidative stress in closed-head injury. Brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17:1007–1019;1997.

    Google Scholar 

  146. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106;1996.

    Google Scholar 

  147. Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Mias GG, Schilling K, Robertson LM, Curran T, Morgan J. Continuous c-fos expression precedes programmed cell death in vivo. Nature 363:166–169;1993.

    Google Scholar 

  148. Sohal RS, Agarwal S, Dubey A, Orr WC. Protein oxidative damage is associated with life expectancy of house flies. Proc Natl Acad Sci USA 90:7255–7259;1993.

    Google Scholar 

  149. Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson's disease. Proc Natl Acad Sci USA 86:1398–1400;1989.

    Google Scholar 

  150. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821;1993.

    Google Scholar 

  151. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924;1989.

    Google Scholar 

  152. Steller H. Mechanism and gene of cellular suicide. Science 267:1445–1449;1995.

    Google Scholar 

  153. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD. Apolipoprotein E: High avidity binding to beta-amyloid and increased frequency of type 4 allele in late onset familial Alzheimer's disease. Proc Natl Acad Sci USA 90:1977–1981;1993.

    Google Scholar 

  154. Strittmatter WJ, Weisgraber KH, Huang DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptides: Isoform specific effects and implication for late-onset Alzheimer's disease. Proc Natl Acad Sci USA 90:8098–8102;1993.

    Google Scholar 

  155. Strittmatter WJ, Weisgraber KH, Goedert M, Sounder AM, Huang D, Corder EH, Dong LM, Jakes R, Alberts MJ, Gilbert JR, Han SH, Mulette C, Einstein G, Schmechel DE, Pericak-Vance MA, Roses AD. Hypothesis: microtubule instability and paired filament formation in the Alzheimer's disease brain are related to apolipoprotein E genotype. Exp Neurol 125:163–171;1994.

    Google Scholar 

  156. Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555;1989.

    Google Scholar 

  157. Sucher NJ, Awobuluyi M, Choi YB, Lipton SA. NMDA receptors: from genes to channels. Trends Pharmacol Sci 17:348–355;1996.

    Google Scholar 

  158. Sun AY, Chen YM. Extracellular ATP-induced apoptosis in PC12 cells: In Ehrlich Y, ed. Molecular and Cellular Mechanisms of Neuronal Plasticity: Basic and Clinical application. New York, Plenum Press, 1998.

    Google Scholar 

  159. Sun AY, Cheng Y, Bu Q, Oldfield F. The biochemical mechanism of the excitotoxicity of kainic acid. Free radical formation. Mol Chem Neuropathol 17:51–63;1992.

    Google Scholar 

  160. Sun AY, Yang WL, Kim HD. Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Ann NY Acad Sci 679:359–363;1993.

    Google Scholar 

  161. Sun AY, Chen YM, Lusiak B. The protective action of resveratrol on apoptotic cell death induced by oxidized lipoproteins. In: Packard L, ed. Biological Oxidants and Antioxidants: Molecular Mechanism and Health Effect. Champaign, AOCS Press 210–222;1998.

    Google Scholar 

  162. Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummulnon S, Fine SA, New D, Epstein LG, Gendelman HE, Gelbard HA. Tumor necrosis factor a-induced apoptosis in human neuronal cells. Protection by antioxidant N-acetyl cysteine and the genes bcl-2 and crm A. Mol Cell Biol 15:2359–2366;1995.

    Google Scholar 

  163. Terry RD, Masliah E, Hansen LA. Structural basis of the cognitive alterations in Alzheimer's disease. In: Terry RD, Katzman R, Bick KL, eds. Alzheimer's Disease. New York, Raven Press, 179–196;1994.

    Google Scholar 

  164. Thompson CM, Markesberry WR, Ehmann WD, Mao YS, Vance DE. Regional brain trace-element studies in Alzheimer's disease. Neurotoxicology 9:1–8;1988.

    Google Scholar 

  165. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462;1995.

    Google Scholar 

  166. Tong L, Perez-Polo JB. The transcription factor DNA binding activity in PC12 cells undergoing apoptosis after glucose deprivation. Neurosci Lett 191:137–140;1995.

    Google Scholar 

  167. Ueda K, Shinohara S, Yagami T, Asakure K, Kawasaki R. Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J Neurochem 68:265–271;1997.

    Google Scholar 

  168. Van Dam PS, Bravenbaer B. Oxidative stress and antioxidant treatment in diabetic neuropathy. Neurosci Res Commun 21:41–48;1997.

    Google Scholar 

  169. Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 76:777–779;1994.

    Google Scholar 

  170. Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med 23:302–313;1997.

    Google Scholar 

  171. Viana M, Barbas C, Banet B, Bonet MV, Castro M, Fraile MU, Herrera E. In vitro effect of a flavonoid-rich extract on LDL oxidation. Atherosclerosis 123:83–91;1996.

    Google Scholar 

  172. Vieira O, Escargueil-Blanc I, Lane I, Meilhae O, Basile JP, Laranjinhe J, Almeida L, Salvayre R, Negresalvayre A. Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL. Br J Pharmacol 123:565–573;1998.

    Google Scholar 

  173. Whittemore ER, Loo DT, Cotman CW. Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5:1485–1488;1994.

    Google Scholar 

  174. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem J 313:17–29;1996.

    Google Scholar 

  175. Wisniewski T, Lalowski M, Golabek A, Vogel T, Frangione B. Is Alzheimer's disease an apolipoprotein E amyloidosis? Lancet 345:956–958;1995.

    Google Scholar 

  176. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Intl Rev Cytol 68:251–306;1980.

    Google Scholar 

  177. Xiang J, Chao DT, Korsmeyer SJ. Baxinduced cell death may not require interleukin 1-beta-converting enzyme-like proteases. Proc Natl Acad Sci 29:2431–2439;1996.

    Google Scholar 

  178. Yang W, Sun AY. Paraquat-induced cell death in PC12 cells. Neurochem Res, in press.

  179. Yang W, Sun AY. Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem Res 23:47–53;1998.

    Google Scholar 

  180. Yang E, Zha J, Jockel J, Boisi LG, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for bcl-x1 and bcl-2 displace Bax and promotes cell death. Cell 80:285–291;1995.

    Google Scholar 

  181. Yankner BA. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16:921–932;1996.

    Google Scholar 

  182. Yen SH, Liu WK, Hall FL, Yan SD, Stern D, Dickson DW. Alzheimer's neurofibrillary lesions: Molecular nature and potential roles of different compounds. Neurobiol Aging 16:381–387;1995.

    Google Scholar 

  183. Yim HS, Kang SO, Hah YC, Chock PB, Yim MB. Free radicals generated during the glycation reaction of amino acid by methylglyoxal. J Biol Chem 270:28228–28233;1995.

    Google Scholar 

  184. Yin D, Yeian X, Brunk UT. Test tube stimulated lipofiscinogenesis. Effect of oxidative stress on autophagocytotic degradation. Mech Ageing Dev 81:37–50;1995.

    Google Scholar 

  185. Yin D. Biochemical basis of lipofuscin, ceroid and age pigment-like fluorophores. Free Radic Biol Med 21:871–888;1996.

    Google Scholar 

  186. Yin XM, Oltval ZN, Korsmeyer SJ. BHa and BH2 domains of bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323;1994.

    Google Scholar 

  187. Ying W. Deleterious network hypothesis of aging. Med Hypotheses 48:143–148;1997.

    Google Scholar 

  188. Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acethylcholine in pial vessels. J Cereb Blood Flow Metab 14:924–929;1994.

    Google Scholar 

  189. Youdium MBH, Ben-Shachar D, Yehuda S, Riederer P. The role of iron in the basal ganglion. Adv Neurol 53:155–162;1990.

    Google Scholar 

  190. Zeevalk GD, Bernard LP, Nicklas WJ. Role of oxidative stress and glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 70:1421–1430;1998.

    Google Scholar 

  191. Zembonicz AC, Vane JR. Induction of nitric oxide synthase activity by toxic shock syndrome in a macrophage-monocytic cell line. Proc Natl Acad Sci USA 89:2051–2055;1992.

    Google Scholar 

  192. Zhang Z, Rydel RE, Drzewiecki GJ, Fuson K, Wright S, Wagulis M, Audia JE, May PC, Hyslop PA. Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: No direct evidence for a role for H2O2 generation. J Neurochem 67:1595–1606;1996.

    Google Scholar 

  193. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected cytochrome C induces apoptosis. Nature 39:449–450;1998.

    Google Scholar 

  194. Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bredesen DE. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 90:4533–4537;1993.

    Google Scholar 

  195. Zhou Z, Smith JD, Greengard P, Gandy S. Alzheimer's amyloid-β peptide forms denaturant-resistant complex with type E3 but not type E4 isoforms of native apolipoprotein E. Mol Med 2:175–180;1996.

    Google Scholar 

  196. Zs-Nagy I, Steiber J, Janey F. Induction of age pigment accumulation in the brain cells of young male rats through iron-injection into the cerebrospinal fluid. Gerontology 41 (suppl 2):145–158;1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A.Y., Chen, YM. Oxidative stress and neurodegenerative disorders. J Biomed Sci 5, 401–414 (1998). https://doi.org/10.1007/BF02255928

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255928

Key Words

Navigation