Skip to main content
Log in

Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.

The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7–0.8%/Myr—a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.

For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler RP (1985) Protein sequencing and taxonomy. In: Jones D, Goodfellow M, Priest FG (eds) Twenty-five years of numerical taxonomy. Academic Press, New York, pp 307–335

    Google Scholar 

  • Baumann P, Baumann L, Woolkalis MJ, Bang SS (1983) Evolutionary relationships inVibrio andPhotobacterium: a basis for a natural classification. Annu Rev Microbiol 37:369–398

    Article  PubMed  Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13

    PubMed  Google Scholar 

  • Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of theDrosophila hsp82 gene. J Mol Biol 188:499–515

    Article  PubMed  Google Scholar 

  • Blumenberg M, Yanofsky C (1982) Evolutionary divergence of theCitrobacter freundii tryptophan operon regulatory region: comparison with other enteric bacteria. J Bacteriol 152:57–62

    PubMed  Google Scholar 

  • Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species ofDrosophila. Nature 309:425–430

    PubMed  Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Buck JB (1978) Functions and evolution of bioluminescence. In: Herring PJ (ed) Bioluminescence in action. Academic Press, New York, pp 419–460

    Google Scholar 

  • Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33

    Google Scholar 

  • Carlin RK (1980) Poly(A): a new evolutionary probe. J Theor Biol 82:353–362

    Article  PubMed  Google Scholar 

  • Chan Y-L, Gutell R, Noller HF, Wool IG (1984) The nucleotide sequence of a rat 18S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18S ribosomal ribonucleic acid. J Biol Chem 259:224–230

    PubMed  Google Scholar 

  • Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of theArabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83:1408–1412

    PubMed  Google Scholar 

  • Chapman DJ, Schopf WJ (1983) Biological and biochemical effects of the development of an aerobic environment. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ pp 302–320

    Google Scholar 

  • Clarke PH, Lin H-C, Wilcox G (1982) The nucleotide sequence of thearaC regulatory gene inSalmonella typhimurium LT2. Gene 18:157–163

    Article  PubMed  Google Scholar 

  • Cleary JM, Smith DW, Harding NE, Zyskind JW (1982) Primary structure of the chromosomal origins (oriC) ofEnterobacter aerogenes andKlebsiella pneumoniae: comparisons and evolutionary relationships. J Bacteriol 150:1467–1471

    PubMed  Google Scholar 

  • Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2:351–387

    Google Scholar 

  • Cocks GT, Wilson AC (1972) Enzyme evolution in the Enterobacteriaceae. J Bacteriol 110:793–802

    PubMed  Google Scholar 

  • Colbert EH (1980) Evolution of the vertebrates: a history of the backboned animals through time, ed 3. John Wiley & Sons, New York

    Google Scholar 

  • Connaughton JE, Rairkar A, Lockard RE, Kumar A (1984) Primary structure of rabbit 18S ribosomal RNA determined by direct sequencing. Nucleic Acids Res 12:4731–4745

    PubMed  Google Scholar 

  • Cooke EM (1974)Escherichia coli and man. Churchill Livingstone, London.

    Google Scholar 

  • Corby HDL, Pohill RM, Sprent RI (1983) Taxonomy. In: Broughton WJ (ed) Nitrogen fixation, vol 3. Legumes. Clarendon Press, London, pp 1–35

    Google Scholar 

  • Crawford IP, Nichols BP, Yanofsky C (1980) Nucleotide sequence of thetrpB gene inEscherichia coli andSalmonella typhimurium. J Mol Biol 142:489–502

    Article  PubMed  Google Scholar 

  • Crepet WL, Taylor DW (1985) The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionideae. Science 228:1087–1089

    Google Scholar 

  • De Wachter R, Huysmans E, Vandenberghe A (1985) 5S ribosomal RNA as a tool for studying evolution. In: Schleifer KH, Stackebrandt E (eds) Evolution of prokaryotes. Academic Press, New York, pp 115–141

    Google Scholar 

  • Dickerson RE (1971) The structure of cytochromec and the rates of molecular evolution. J Mol Evol 1:26–45

    Article  PubMed  Google Scholar 

  • Dickerson RE (1980) Cytochrome c and the evolution of energy metabolism. Sci Am 242(3):136–153

    Google Scholar 

  • Duncan K, Lewendon A, Coggins JR (1984) The complete amino acid sequence ofEscherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett 170:59–63

    Article  Google Scholar 

  • Eckenrode VK, Arnold J, Meagher RB (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol 21:259–269

    Article  Google Scholar 

  • Erdmann VA, Wolters J (1986) Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res 14:r1-r60

    PubMed  Google Scholar 

  • Erickson BD, Burton ZF, Watanabe KK, Burgess RR (1985) Nucleotide sequence of therpsU-dnaG-rpoD operon fromSalmonella typhimurium and a comparison of this sequence with the homologous operon ofEscherichia coli. Gene 40:67–78

    Article  PubMed  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    PubMed  Google Scholar 

  • Freudl R, Cole ST (1983) Cloning and characterization of theompA gene fromSalmonella typhimurium. Eur J Biochem 134:497–502

    Article  PubMed  Google Scholar 

  • George DG, Hunt LT, Yeh L-S, Barker WC (1985) New perspectives on bacterial ferredoxin evolution. J Mol Evol 22:20–31

    PubMed  Google Scholar 

  • Gibbons RJ, Kapsimalis B (1967) Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice. J Bacteriol 93:510–512

    PubMed  Google Scholar 

  • Gillespie JH (1986) Natural selection and the molecular clock. Mol Biol Evol 3:138–155

    PubMed  Google Scholar 

  • Guoy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074

    PubMed  Google Scholar 

  • Harland WB (1967) The fossil record. London Geological Society, London

    Google Scholar 

  • Hasegawa M, Iida Y, Yano T, Takaiwa F, Iwabuchi M (1985) Phylogenetic relationships among eukaryotic kingdoms in-ferred from ribosomal RNA sequences. J Mol Evol 22:32–38

    Article  PubMed  Google Scholar 

  • Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, New York, pp 1332–1345

    Google Scholar 

  • Helm-Bychowski KM, Wilson AC (1986) Rates of nuclear DNA evolution in pheasant-like birds: evidence from restriction maps. Proc Natl Acad Sci USA 83:688–692

    PubMed  Google Scholar 

  • Helm-Bychowski KM, Wilson AC (1988) Restriction maps and the temporal calibration of nuclear DNA evolution in phasianoid birds. Proc Int Ornith Congr 19 (in press)

  • Hennecke H, Kaluza K, Fuhrman M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA inRhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Article  Google Scholar 

  • Herring PJ (1977) Luminescence in cephalopods and fishes. Symp Zool Soc Lond 38:127–159

    Google Scholar 

  • Hofmann HJ, Schopf JW (1983) Early proterozoic microfossils. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 321–360

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere. John Wiley & Sons, New York

    Google Scholar 

  • Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215: 1577–1585

    PubMed  Google Scholar 

  • Holland HD, Lazar B, McCaffrey M (1986) Evolution of the atmosphere and oceans. Nature 320:27–33

    Article  PubMed  Google Scholar 

  • Hori H, Osawa S (1978) Evolution of ribosomal proteins inEnterobacteriaceae. J Bacteriol 133:1089–1095

    PubMed  Google Scholar 

  • Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385

    PubMed  Google Scholar 

  • Hori H, Itoh T, Osawa S (1982) The phylogenetic structure of metabacteria. Zentralbl Bakteriol Parasitenkd Infectionskr Hyg Abt 1 Orig Reihe C 3:18–30

    Google Scholar 

  • Horowitz H, van Arsdell J, Platt T (1983) Nucleotide sequence of thetrpD andtrpC genes ofSalmonella typhimurium. J Mol Biol 169:775–797

    PubMed  Google Scholar 

  • Huysmans E, De Wachter R (1986) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 14:r73-r118

    PubMed  Google Scholar 

  • Ikemura T (1982) Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the respective codons in its proteins. J Mol Biol 146:1–21

    Article  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–33

    PubMed  Google Scholar 

  • Ikemura T, Ozeki H (1983) Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to isoacceptor contents. Cold Spring Harbor Symp Quant Biol 42:1087–1097

    Google Scholar 

  • Kaplan JB, Nichols BP (1983) Nucleotide sequence ofEscherichia coli pabA and its evolutionary relationship to the trp(G)D. J Mol Biol 168:451–468

    PubMed  Google Scholar 

  • Kaplan JB, Goncharoff P, Seibold AM, Nichols BP (1984) Nucleotide sequence of theAcinetobacter calcoaceticus trpGDC gene cluster. Mol Biol Evol 1:456–472

    PubMed  Google Scholar 

  • Kaplan JB, Merkel WK, Nichols BP (1985) Evolution of the glutamine amidotransferase genes: nucleotide sequences of thepabA genes fromSalmonella typhimurium, Klebsiella aerogenes andSerratia marcescens. J Mol Biol 183:327–340

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New York

    Google Scholar 

  • Kimura M (1986) DNA and the neutral theory. Philos Trans R Soc Lond [Biol] 312:343–354

    Google Scholar 

  • Kimura M, Ohta T (1973) Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nature New Biol 243:199–200

    Article  PubMed  Google Scholar 

  • Koop B, Goodman M, Xu P, Chan K, Slightom J (1986) Primate η-globin DNA sequences and man's place among the great apes. Nature 319:234–238

    Article  PubMed  Google Scholar 

  • Knoll A (1985a) The distribution and evolution of microbial life in the late Proterozoic era. Annu Rev Microbiol 39:391–417

    Article  PubMed  Google Scholar 

  • Knoll A (1985b) Patterns of evolution in Archean and Proterozoic eons. Paleobiology 11:53–64

    Google Scholar 

  • Krikos A, Mutoh N, Boyd A, Simon MI (1983) Sensory transducers ofE. coli are composed of discrete structural and functional domains. Cell 33:615–622

    Article  PubMed  Google Scholar 

  • Küntzel H, Piechulla B, Hahn U (1983) Consensus structure and evolution of 5S rRNA. Nucleic Acids Res 11:893–900

    PubMed  Google Scholar 

  • Lake JA, Clark MW, Henderson E, Fay SP, Oakes M, Scheinman A, Thornber JP, Mah RA (1985) Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci USA 82:3716–3720

    PubMed  Google Scholar 

  • Li W-H, Luo C-C, Wu C-I (1985a) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94

    Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985b) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Lim G, Burton JC (1983) Nodulation status of the Leguminosae. In: Broughton WJ (ed) Nitrogen fixation, vol. 2.Rhizobium. Clarendon, London, pp 1–34

    Google Scholar 

  • Lopes JM, Lawther RP (1986) Analysis and comparison of the internal promoter, pE, of theilvGMEDA operons fromEscherichia coli K-12 andSalmonella typhimurium. Nucleic Acids Res 14:2779–2798

    PubMed  Google Scholar 

  • McElroy WD, Seliger H (1962) Origin and evolution of bioluminescence. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 91–101

    Google Scholar 

  • Meyer TE, Cusanovich MA, Kamen MD (1986) Evidence against the use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc Natl Acad Sci USA 83:217–220

    PubMed  Google Scholar 

  • Milkman R, Crawford IP (1983) Clustered third-base substitutions among wild strains ofEscherichia coli. Science 221: 378–380

    PubMed  Google Scholar 

  • Mutoh N, Simon ML (1986) Nucleotide sequence corresponding to five chemotaxis genes inEscherichia coli. J Bacteriol 165:161–166

    PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei M (1976) The cost of natural selection and the extent of protein polymorphism. Trends Biochem Sci 1:N247–248

    Google Scholar 

  • Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17:73–118

    Google Scholar 

  • Neuhard J, Stauning E, Kelin RA (1985) Cloning and characterization of thepyrE gene and ofPyrE::Mud1 (Ap® lac) fusions fromSalmonella typhimurium. Eur J Biochem 146: 597–603

    Article  PubMed  Google Scholar 

  • Nichols BP, Yanofsky C (1979) Nucleotide sequences oftrpA ofSalmonella typhimurium andEscherichia coli: an evolutionary comparison. Proc Natl Acad Sci USA 76:5244–5248

    Google Scholar 

  • Nichols BP, Miozzari GF, VanCleemput M, Bennett GN, Yanofsky C (1980) Nucleotide sequences of thetrpG regions ofEscherichia coli, Shigella dysenteriae, Salmonella typhimurium andSerratia marcescens. J Mol Biol 142:503–517

    Article  PubMed  Google Scholar 

  • Nichols BP, Blumenberg M, Yanofsky C (1981) Comparison of the nucleotide sequence oftrpA and sequences immediately beyond thetrp operon inKlebsiella aerogenes, Salmonella typhimurium andEscherichia coli. Nucleic Acids Res 9:1743–1755

    PubMed  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolutionary history of enteric bacteria. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 2. ASM Publications, Washington DC, pp 1649–1654

    Google Scholar 

  • Ochman H, Whittam TS, Caugant DA, Selander RK (1983) Enzyme polymorphism and genetic population structure inEscherichia coli andShigella. J Gen Microbiol 129:2715–2726

    PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  PubMed  Google Scholar 

  • Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution inDrosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83:9090–9093

    PubMed  Google Scholar 

  • Raynal F, Michot B, Bachellerie J-P (1984) Complete nucleotide sequence of mouse 18S rRNA gene: comparison with other available homologs. FEBS Lett 167:263–268

    Article  PubMed  Google Scholar 

  • Rhoads DC, Morse JW (1971) Evolutionary and ecological significance of oxygen deficient marine basins. Lethaia 4:413–428

    Google Scholar 

  • Rocha V, Crawford IP, Mills SE (1972) Comparative immunological and enzymatic study of the tryptophan synthetaseβ 2 subunit in theEnterobacteriaceae. J Bacteriol 111:163–168

    PubMed  Google Scholar 

  • Romer AS (1966) Vertebrate paleontology. University of Chicago Press, Chicago

    Google Scholar 

  • Runnegar B (1982) The Cambrian explosion: animals or fossils? J Geol Soc Aust 29:395–411

    Google Scholar 

  • Russo AF, Koshland DE Jr (1983) Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 220:1016–1020

    PubMed  Google Scholar 

  • Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and regulation of themetJ regulatory gene inEscherichia coli. J Biol Chem 259:14282–14285

    PubMed  Google Scholar 

  • Sarich VM (1977) Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 165:24–28

    Article  Google Scholar 

  • Savageau MA (1983)Escherichia coli habitats, cell types, and mechanisms of gene control. Am Nat 122:732–744

    Article  Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 214–239

    Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution of earth's earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton NJ, pp 361–384

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978a) Origin of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403

    PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978b) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. Natl Biomed Res Found, Washington DC, pp 29–44

    Google Scholar 

  • Selander RK, Caugant DA, Whittam TS (1987) Genetic structure and variation in natural populations ofEscherichia coli. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds)Escherichia coli andSalmonella typhimurium: cellular and molecular biology, vol 2. ASM Publications, Washington DC, pp 1625–1648

    Google Scholar 

  • Sharp P, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    PubMed  Google Scholar 

  • Spencer DF, Schnare MN, Gray MW (1984) Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria andEscherichia coli. Proc Natl Acad Sci USA 81:493–497

    PubMed  Google Scholar 

  • Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. Symp Soc Gen Microbiol 32:1–31

    Google Scholar 

  • Stackebrandt E, Ludwig W, Fox GE (1985) 16S ribosomal RNA oligonucleotide catalogues. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, New York, pp 75–108

    Google Scholar 

  • Stalker DM, Hiatt WR, Comai L (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem 260:4724–4728

    PubMed  Google Scholar 

  • Stock (Maderis) AM (1986) Bacterial chemotaxis:che genes and their products. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Stock A, Koshland DE Jr, Stock J (1985) Homologies between theSalmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci USA 82:7989–7993

    PubMed  Google Scholar 

  • Takaiwa F, Oono K, Sugiura M (1984) The complete nucleotide sequence of a rice 17S rRNA gene. Nucleic Acids Res 12: 5441–5448

    PubMed  Google Scholar 

  • Urbanowski ML, Stauffer GV (1985) Nucleotide sequence and biochemical characterization of themetJ gene fromSalmonella typhimurium LT2. Nucleic Acids Res 13:673–685

    PubMed  Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196

    PubMed  Google Scholar 

  • Walker JCG (1974) Evolution of the atmosphere. Macmillan, New York

    Google Scholar 

  • Weisburg WG, Oyaizu Y, Oyaizu H, Woese CR (1985a) Natural relationship between bacteroides and flavobacteria. J Bacteriol 164:230–236

    PubMed  Google Scholar 

  • Weisburg WG, Woese CR, Dobson ME, Weiss ME (1985b) A common origin of rickettsiae and certain plant pathogens. Science 230:556–558

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  PubMed  Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Google Scholar 

  • Woese CR (1982) Archaebacteria and cellular origins: an overview. Zentralbl Bakteriol Parasitenkd Infectionskr Hyg Abt 1 Orig Reihe C 3:1–17

    Google Scholar 

  • Woese CR, Stackebrandt E, Macke T, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151

    PubMed  Google Scholar 

  • Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    PubMed  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    PubMed  Google Scholar 

  • Yanofsky C, VanCleemput M (1982) Nucleotide sequence oftrpE ofSalmonella typhimurium and its homology with the corresponding sequence ofEscherichia coli. J Mol Biol 155: 235–246

    Article  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    PubMed  Google Scholar 

  • Zyskind JW, Cleary JM, Brusilow WSA, Harding NE, Smith DW (1983) Chromosomal replication origin from the marine bacteriumVibrio harveyi functions inEschericheria coli: oriC consensus sequence. Proc Natl Acad Sci USA 80:1164–1168

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochman, H., Wilson, A.C. Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J Mol Evol 26, 74–86 (1987). https://doi.org/10.1007/BF02111283

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111283

Key words

Navigation