Skip to main content
Log in

Renal tubular hyperkalaemia in childhood

  • Practical Pediatric Nephrology
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Potassium output from the body is regulated by renal excretion, which takes place predominantly in the late distal and cortical collecting tubules. The accepted model for potassium secretion implies the accumulation of potassium into the cell by the activity of basolateral Na−K-ATPase and its exit through voltage-dependent conductive channels. The factors regulating renal potassium secretion are potassium intake, distal urinary flow, systemic acid-base equilibrium, aldosterone, antidiuretic hormone and, probably, epinephrine. Renal handling of potassium is best studied by the response to the acute administration of furosemide. This loop diuretic not only increases sodium and chloride excretion but also enhances potassium and hydrogen ion excretion and stimulates the renin-aldosterone axis. The term “renal tubular hyperkalaemia” refers to a tubular dysfunction where the hyperkalaemia is disproportionate to any reduction in glomerular filtration rate (GFR) and not due primarily or solely to aldosterone deficiency or to drugs impairing either mineralocorticoid action or tubular transport. The syndromes of renal tubular hyperkalaemia mainly observed in childhood are “chloride shunt” syndrome, hyporeninaemic hypoaldosteronism and primary or secondary pseudohypoaldosteronism. Differential diagnosis between these conditions is easily made if attention is paid to the level of GFR, presence of sodium wasting, activity of the renin-aldosterone axis and renal response to acute administration of furosemide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sterns RH, Cox M, Feig PU, Singer I (1981) Internal potassium balance and the control of plasma potassium concentration. Medicine 60: 339–354

    Google Scholar 

  2. Tannen RL, Marino R, Dawson DC (1986) K+ transport by rat colon: adaptation to a low potassium diet. Am J Physiol 250: F483-F487

    Google Scholar 

  3. Hayslett JP, Binder HJ (1982) Mechanisms of potassium adaptation. Am J Physiol 243: F103-F112

    Google Scholar 

  4. Martin RS, Panese S, Virginillo M, Gimenez M, Litardo M, Arrizurieta E, Hayslett JP (1986) Increased secretion of potassium in the rectum of humans with chronic renal failure. Am J Kidney Dis 8: 105–110

    Google Scholar 

  5. Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Physiol 240: F257-F268

    Google Scholar 

  6. Williams ME, Spokes K, Silva P (1987) Role of α-adrenergic hormones in potassium homeostasis in the rat. J Lab Clin Med 110: 245–249

    Google Scholar 

  7. Sager PT, DeFronzo RA (1987) Dopaminergic regulation of extrarenal potassium metabolism. Miner Electrolyte Metab 13: 385–392

    Google Scholar 

  8. Wright FS, Giebisch G (1978) Renal potassium transport: contributions of individual nephron segments and populations. Am J Physiol 235: F215-F227

    Google Scholar 

  9. Stanton B, Giebisch G (1981) Mechanisms of urinary potassium excretion. Miner Electrolyte Metab 5: 100–120

    Google Scholar 

  10. Jamison RL, Work J, Schaffer JA (1982) New pathways for potassium transport in the kidney. Am J Physiol 242: F297-F312

    Google Scholar 

  11. Katz AI (1982) Renal Na−K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol 242: F207-F219

    Google Scholar 

  12. Hunter M, Lopes AG, Boulpaep E, Giebisch G (1986) Regulation of single potassium ion channels from apical membrane of rabbit collecting tubules. Am J Physiol 251: F725-F733

    Google Scholar 

  13. Findt G, Palmer LG (1987) Ca-activated K channels in apical membranes of mammalian CCT, and their role in K secretion. Am J Physiol 252: F458-F467

    Google Scholar 

  14. Good DW, Wright FS (1980) Luminal influences on potassium secretion: transepithelial voltage. Am J Physiol 239: F289-F298

    Google Scholar 

  15. Stokes JB (1981) Potassium secretion by cortical collecting tubules: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241: F395-F402

    Google Scholar 

  16. Ellison DH, Velázquez H, Wright FS (1987) Mechanisms of sodium, potassium and chloride transport by the renal distal tubule. Miner Electrolyte Metab 13: 422–432

    Google Scholar 

  17. Young DB (1982) Relationship between plasma potassium concentration and renal potassium excretion. Am J Physiol 242: F599-F603

    Google Scholar 

  18. Field MJ, Stanton BA, Giebisch G (1984) Differential acute effects of aldosterone, dexamathasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J Clin Invest 74: 1792–1802

    Google Scholar 

  19. Wright FS, Strieder N, Fowler N, Giebisch G (1971) Potassium secretion by distal tubule after potassium adaptation. Am J Physiol 221: 437–448

    Google Scholar 

  20. Hené RH, Koomans HA, Boer P, Dorhout Mees EJ (1986) Adaptation to chronic potassium loading in normal man. Miner Electrolyte Metab 12: 165–172

    Google Scholar 

  21. Good DW, Wright FS (1979) Luminal influences on potassium secretion: sodium concentration and fluid flow rate. Am J Physiol 236: F192-F205

    Google Scholar 

  22. Good DW, Velázquez H, Wright FS (1984) Luminal influences on potassium secretion: low sodium concentration. Am J Physiol 246: F609-F619

    Google Scholar 

  23. Stanton BA, Giebisch G (1982) Effects of pH on potassium transport by renal distal tubule. Am J Physiol 242: F544-F551

    Google Scholar 

  24. Field MJ, Giebisch G (1985) Hormonal control of renal potassium excretion. Kidney Int 27: 379–387

    Google Scholar 

  25. Marver D, Kokko JP (1983) Renal target sites and the mechanism of action of aldosterone. Miner Electrolyte Metab 9: 1–18

    Google Scholar 

  26. Stanton BA (1987) Regulation of Na+ and K+ transport by mineralocorticoids. Semin Nephrol 7: 82–90

    Google Scholar 

  27. Field MJ, Stanton BA, Giebisch G (1984) Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int 25: 502–511

    Google Scholar 

  28. Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting tubule by the rat. Effects of bradykinin, vasopressin, and desoxycorticosterone. J Clin Invest 76: 132–136

    Google Scholar 

  29. DeFronzo RA, Stanton BA, Klein-Robbenhaar G, Giebisch G (1983) Inhibitory effect of epinephrine on renal potassium secretion: a micropuncture study. Am J Physiol 245: F303-F311

    Google Scholar 

  30. Katz LD, D'Arella J, DeFronzo RA (1984) Effect of epinephrine on renal potassium excretion in the isolated perfused rat kidney. Am J Physiol 247: F331-F338

    Google Scholar 

  31. Pérez O, Pelleya R, Oster JR (1982) Renal tubular hyperkalemia. Am J Nephrol 2: 109–114

    Google Scholar 

  32. McSherry E (1981) Renal tubular acidosis in childhood. Kidney Int 20: 799–809

    Google Scholar 

  33. Batlle DC (1983) Renal tubular acidosis. Med Clin North Am 67: 859–878

    Google Scholar 

  34. Batlle DC (1981) Hyperkalemic hyperchloremic metabolic acidosis associated with selective aldosterone deficiency and distal renal tubular acidosis. Semin Nephrol 1: 260–274

    Google Scholar 

  35. Batlle DC, Kutzman NA (1982) Distal renal tubular acidosis: pathogenesis and classification. Am J Kidney Dis 1: 328–344

    Google Scholar 

  36. DeFronzo RA (1980) Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int 17: 118–134

    Google Scholar 

  37. Batlle DC (1986) Segmental characterization of defects in collecting tubule acidification. Kidney Int 30: 546–554

    Google Scholar 

  38. Clapp JR, Rector FC Jr, Seldin DW (1962) Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am J Physiol 202: 781–786

    Google Scholar 

  39. Velázquez H, Wright FS, Good DW (1982) Luminal influences on potassium secretion: chloride replacement with sulfate. Am J Physiol 242: F46-F51

    Google Scholar 

  40. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R (1983) Defect in urinary acidification in nephrotic syndrome and its correction by furosemide, Nephron 32: 308–313

    Google Scholar 

  41. Rastogi SP, Crawford C, Wheeler R, Flanigan W, Arruda JAL (1984) Effect of furosemide on urinary acidification in distal renal tubular acidosis. J Lab Clin Med 104: 271–282

    Google Scholar 

  42. Tarka J, Kutzman NA, Batlle DC (1983) Clinical assessment of urinary acidification using a short test with oral furosemide. Kidney Int 23: 137

    Google Scholar 

  43. Rastogi S, Bayliss JM, Nascimento L, Arruda JAL (1985) Hyperkalemic renal tubular acidosis: effect of furosemide in humans and rats. Kidney Int 28: 801–807

    Google Scholar 

  44. Stine KC, Linshaw MA (1985) Use of furosemide in the evaluation of renal tubular acidosis. J Pediatr 107: 559–562

    Google Scholar 

  45. Hropot M, Fowler N, Karlmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on elecrolyte transport and acidification. Kidney Int 28: 477–489

    Google Scholar 

  46. Kaplan NM, Kem DC, Holland OB, Kramer NJ, Higgins J, Gómez-Sánchez C (1976) The intravenous furosemide test: a simple way to evaluate renin responsiveness. Ann Intern Med 84: 639–645

    Google Scholar 

  47. West ML, Bendz O, Chen CB, Singer GG, Richardson RMA, Sonnenberg H, Halperin ML (1986) Development of a test to evaluate the transtubular potassium gradient in the cortical collecting duct in vivo. Miner Electrolyte Metab 12: 226–233

    Google Scholar 

  48. West ML, Marsden PA, Richardson RMA, Zettle RM, Halperin ML (1986) New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab 12: 234–238

    Google Scholar 

  49. Batlle DC, Arruda JAL, Kutzman NA (1981) Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380

    Google Scholar 

  50. DeFronzo RA, Cooke R, Goldberg M, Cox M, Myers AR, Agus ZS (1977) Impaired renal secretion of potassium in systemic lupus erythematosus. Ann Intern Med 86: 268–271

    Google Scholar 

  51. DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR (1979) Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med 90: 310–316

    Google Scholar 

  52. Batlle D, Itsarayoungyuen K, Arruda JAL, Kutzman NA (1982) Hyperkalemic hyperchloremic metabolic acidosis in sickle cell hemoglobinopathies. Am J Med 72: 188–192

    Google Scholar 

  53. DeFronzo RA, Goldberg M, Cooke CR, Barber C, Grossman RA, Agus SZ (1977) Investigations into the mechanisms of hyperkalemia following renal transplantation. Kidney Int 11: 359–365

    Google Scholar 

  54. Batlle DC, Mozes MF, Manaligod J, Arruda JAL, Kutzman NA (1981) The pathogenesis of hyperchloremic metabolic acidosis associated with renal transplantation. Am J Med 70: 786–796

    Google Scholar 

  55. Paver WKA, Pauline GJ (1964) Hypertension and hyperpotassaemia without renal disease in a young male. Med J Aust 2: 305–306

    Google Scholar 

  56. Gordon RD, Geddes RA, Pawsey GK, O'Halloran MW (1970) Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Aust Ann Med 4: 287–294

    Google Scholar 

  57. Gordon RD (1986) Syndrome of hypertension and hyperkalaemia with normal glomerular filtration rate. Hypertension 8: 93–102

    Google Scholar 

  58. Spitzer A, Edelmann CM Jr, Goldberg L, Henneman PH (1973) Short stature, hyperkalemia, and acidosis: a defect in renal transport of potassium. Kidney Int 3: 251–257

    Google Scholar 

  59. Weinstein SF, Allan DME, Mendoza SA (1974) Hyperkalemia, acidosis and short stature associated with a defect in renal potassium excretion. J Pediatr 85: 355–358

    Google Scholar 

  60. Farfel Z, Iaim A, Levi J, Gafni J (1978) Proximal renal tubular acidosis. Association with familial normoaldosteronemic hyperpotassemia and hypertension. Arch Intern Med 138: 1837–1840

    Google Scholar 

  61. Iitaka K, Watanabe N, Asakura A, Kasai N, Sakai T (1980) Familial hyperkalemia, metabolic acidosis and short stature with normal renin and aldosterone levels. Int J Pediatr Nephrol 1: 242–245

    Google Scholar 

  62. Margolis BL, Lifshitz MD (1986) The Spitzer-Weinstein syndrome: one form of type IV renal tubular acidosis and its response to hydrochlorothiazide. Am J Kidney Dis 7: 241–244

    Google Scholar 

  63. Sauder SE, Kelch RP, Grekin RJ, Kelsch RC (1987) Suppression of plasma renin activity in a boy with chronic hyperkalemia. Am J Dis Child 141: 922–927

    Google Scholar 

  64. Schambelan M, Sebastian A, Rector FC Jr (1981) Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 19: 716–727

    Google Scholar 

  65. Semmerkrot B, Monnens L, Theelen BGA, Rascher W, Gabreëls F, Willems J (1987) The syndrome of hypertension and hyperkalaemia with normal glomerular function (Gordon's syndrome). A pathophysiological study. Pediatr Nephrol 1: 473–478

    Google Scholar 

  66. Reference deleted

  67. Rodríguez-Soriano J, Vallo A, García-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin, Pediatr Nephrol 1: 465–472

    Google Scholar 

  68. Nahum H, Paillard M, Prigent A, Leviel F, Bichara M, Gardin JP, Idatte JM (1986) Pseudohypoaldosteronis type II: proximal renal tubular acidosis and dDAVP-sensitive renal hyperkalemia. Am J Nephrol 6: 253–262

    Google Scholar 

  69. Tunny T, Higgins B, Gordon R (1986) Plasma levels of atrial natriuretic peptide in man in primary aldosteronism, in Gordon's syndrome and in Bartter's syndrome. Clin Exp Pharmacol Physiol 13: 341–345

    Google Scholar 

  70. Sanjad SA, Keenan BS, Leighton Hill L (1983) Renal hypoprostaglandinism, hypertension, and type IV renal tubular acidosis reversed by furosemide. Ann Intern Med 99: 624–627

    Google Scholar 

  71. Hudson JB, Chobanian AV, Relman AS (1957) Hypoaldosteronism: a clinical study of a patient with an isolated adrenal mineralocorticoid deficiency resulting in hyperkalemia and Stokes-Adams attacks. N Engl J Med 257: 529–536

    Google Scholar 

  72. Schambelan M, Stockigt JR, Biglieri EG (1972) Isolated hypoaldosteronism in adults: a renin-deficiency syndrome. N Engl J Med 287: 573–578

    Google Scholar 

  73. Weidman R, Reinhart R, Maxwell MH, Rowe P, Coburn JW, Massry SG (1973) Syndrome of hyporeninemic hypoaldosteronism and hyperkalemia in renal disease. J Clin Endocrinol Metab 36: 965–977

    Google Scholar 

  74. Schambelan M, Sebastian A, Biglieri EG (1980) Prevalence, pathogenesis, and fuctional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 17: 89–101

    Google Scholar 

  75. Phelps KR, Lieberman RL, Oh MS, Carroll HJ (1980) Pathophysiology of the syndrome of hyporeninemic hypoaldosteronism. Metabolism 29: 186–199

    Google Scholar 

  76. Arruda JAL, Batlle DC, Sehy T, Roseman MK, Boronowski RL, Kutzman NA (1981) Hyperkalemia and renal insufficiency: role of selective aldosterone deficiency and tubular unresponsiveness to aldosterone. Am J Nephrol 1: 160–167

    Google Scholar 

  77. Williams GH (1986) Hyporeninemic hypoaldosteronism. N Eng J Med 314: 1041–1042

    Google Scholar 

  78. Rodríguez-Soriano J, Vallo A, Sanjurjo P, Castillo G, Oliveros R (1986) Hyporeninemic hypoaldosteronism in children with chronic renal failure. J Pediatr 109: 476–482

    Google Scholar 

  79. Kiley J, Zager P (1984) Hyporeninemic hypoaldosteronism in two patients with systemic lupus erythematosus. Am J Kidney Dis 4: 39–43

    Google Scholar 

  80. Konzeny GA, Hurley RM, Fresco R, Vertuno LL, Bansal VK, Hano JE (1986) Systemic lupus erythematosus presenting with hyporeninemic hypoaldosteronism in a 10-year old girl. Am J Nephrol 6: 321–324

    Google Scholar 

  81. Hené RJ, Koomans HA, Boer P, Dorhout Mees EJ (1987) Effect of high-dose aldosterone infusion on renal electrolyte excretion in patients with renal insufficiency. Am J Nephrol 7: 33–37

    Google Scholar 

  82. Pérez GO, Oster JR, Vaamonde CA (1974) Renal acidosis and renal potassium handling in selective hypoaldosteronism. Am J Med 57: 809–816

    Google Scholar 

  83. Szylman P, Better OS, Chaimovitz C, Rosler A (1976) Role of hyperkalemia in the metabolic acidosis of isolated hypoaldosteronism. N Engl J Med 294: 361–365

    Google Scholar 

  84. Sowers JR, Beck FWJ, Waters BK, Barrett JD, Welch BG (1985) Studies of renin activation and regulation of aldosterone and 18-hydroxycorticostrone biosynthesis in hyporeninemic hypoaldosteronism. J Clin Endocrinol Metab 61: 60–67

    Google Scholar 

  85. Nadler JL, Lee FO, Hsueh W, Horton R (1986) Evidence of prostacyclin deficiency in hyporeninemic hypoaldosteronism. N Engl J Med 314: 1015–1020

    Google Scholar 

  86. Patrono C, Pugliese F, Ciabattoni G, Patrigneni P, Maseri A, Chierchia S, Peskar BA, Cinotti GA, Simonetti BM, Pierucci A (1982) Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J Clin Invest 69: 231–239

    Google Scholar 

  87. Zusman RM (1984) Renin- and non-renin-mediated antihypertensive actions of converting enzyme inhibitors. Kidney Int 25: 969–983

    Google Scholar 

  88. Burnett JC Jr, Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic peptide on renal function and renin release. Am J Physiol 247: F863-F866

    Google Scholar 

  89. Atarashi K, Mulrow PJ, Franco-Saenz R (1985) Effect of atrial peptide on aldosterone production. J Clin Invest 76: 1807–1811

    Google Scholar 

  90. Hasegawa K, Matsushita Y, Inone T, Morii H, Ishibashi M, Yamaji T (1986) Plasma levels of atrial natriuretic peptide in patients with chronic renal failure. J Clin Endocrinol Metab 63: 819–822

    Google Scholar 

  91. Sebastian A, Schambelan M, Lindenfeld S, Morris RC Jr (1977) Amelioration of metabolic acidosis with fluorocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med 297: 576–583

    Google Scholar 

  92. Sebastian A, Schambelan M, Sutton JM (1984) Amelioration of hyperchloremic acidosis with furosemide therapy in patients with chronic renal insufficiency and type 4 renal tubular acidosis. Am J Nephrol 4: 287–300

    Google Scholar 

  93. Shuper A, Eisenstein B, Stark H, Varsano I (1982) Hyporeninemic hypoaldosteronism in a child with lactic acidosis, deafness, and mental retardation. J Pediatr 100: 769–772

    Google Scholar 

  94. Monnens L, Fiselier T, Bos B, Van Munster P (1983) Hyporeninemic hypoaldosteronism in infancy. Nephron 35: 140–142

    Google Scholar 

  95. Landier F, Guyene TT, Boutignon H, Nahoul K, Carrol P, Job JC (1984) Hyporeninemic hypoaldosteronism in infancy: a familial disease. J Clin Endocrinol Metab 58: 143–148

    Google Scholar 

  96. Cheek DB, Perry JA (1958) A salt wasting syndrome in infancy. Arch Dis Child 33: 252–256

    Google Scholar 

  97. Chitayat D, Spirer Z, Ayalon D, Golander A (1985) Pseudohypoaldosteronism in a female infant and her family: diversity of clinical expression and mode of inheritance. Acta Paediatr Scand 74: 619–622

    Google Scholar 

  98. Roy C (1977) Pseudohypoaldosteronism familial. Arch Fr Pediatr 34: 37–54

    Google Scholar 

  99. Limal JM, Rappaport R, Déchaux M, Riffaud C, Morin C (1978) Familial pseudohypoaldosteronism. Lancet I: 51

    Google Scholar 

  100. Hanukoglu A, Fried D, Gotlieb A (1978) Inheritance of pseudohypoaldosteronism. Lancet I: 1359

    Google Scholar 

  101. Schindler AM, Bergman GE (1986) Prospective diagnosis of pseudohypoaldosteronism. Pediatrics 78: 516–518

    Google Scholar 

  102. Blachar Y, Kaplan BS, Griffel B, Levin S (1979) Pseudohypoaldosteronism. Clin Nephrol 11: 281–288

    Google Scholar 

  103. Armanini D, Kuhnle U, Strasser T, Dorr H, Weber PC, Butenandt J, Stockigt PR, Pearce C, Funder JW (1985) Pseudohypoaldosteronism: demonstration of aldosterone receptors deficiency. N Engl J Med 313: 1178–1181

    Google Scholar 

  104. Oberfield SE, Levine LS, Carey RM, Bejar R, New MI (1979) Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 48: 228–234

    Google Scholar 

  105. Savage MO, Jefferson IG, Dillon MJ, Milla PJ, Honour JW, Grant DB (1982) Pseudohypoaldosteronism: severe salt wasting in infancy caused by generalized mineralocorticoid unresponsiveness. J Pediatr 101: 239–242

    Google Scholar 

  106. Anand SK, Froberg L, Northway JD, Weinberger M, Wright JC (1976) Pseudohypoaldosteronism due to sweat gland dysfunction. Pediatr Res 10: 677–682

    Google Scholar 

  107. Honour JW, Dillon MJ, Shackleton CHL (1982) Analysis of steroids in urine for differentiation of pseudohypoaldosteronism and aldosterone biosynthetic defect. J Clin Endocrinol Metab 54: 325–331

    Google Scholar 

  108. Rossler A (1984) The natural history of salt-wasting disorders of adrenal and renal origin. J Clin Endocrinol Metab 59: 689–700

    Google Scholar 

  109. Stayaviboon S, Dawgert F, Monteleone PL, Monteleone JA (1982) Persistent pseudohypoaldosteronism in a 7-year-old boy. Pediatrics 69: 458–462

    Google Scholar 

  110. Alon U, Kodroff MB, Broecker BH, Kirkpatrick BV, Chan JCM (1984) Renal tubular acidosis type 4 in neonatal unilateral kidney diseases. J Pediatr 104: 855–860

    Google Scholar 

  111. Unal D, Picon G, Rouault F, Montfort G, Lebreuil G (1975) Hyponatrémie avec fuite urinaire de sodium chex le nouveau-né et le nourrisson. Pédiatrie 30: 729–737

    Google Scholar 

  112. Rodríguez-Soriano J, Vallo A, Oliveros R, Castillo G (1983) Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr 103: 375–380

    Google Scholar 

  113. Van der Heijden AJ, Versteegh FGA, Wolff ED, Sukhai RN, Scholtmeijer RJ (1985) Acute tubular dysfunction in infants with obstructive uropathy. Acta Paediatr Scand 74: 589–594

    Google Scholar 

  114. Marra G, Goj V, Appiani AC, Dell Agnola CA, Tirelli SA, Tadini B, Nicolini U, Cavanna G, Assael BM (1987) Persistent tubular resistance to aldosterone in infants with congenital hydronephrosis corrected neonatally. J Pediatr 110: 868–872

    Google Scholar 

  115. Appiani AC, Marra G, Tirelli SA, Goj V, Romeo L, Cavanna G, Assael BM (1986) Early childhood hyperkalaemia: variety of pseudohypoaldosteronism. Acta Paediatr Scand 75: 970–974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Soriano, J., Vallo, A. Renal tubular hyperkalaemia in childhood. Pediatr Nephrol 2, 498–509 (1988). https://doi.org/10.1007/BF00853448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00853448

Key words

Navigation