Article Text

Download PDFPDF
Excellent outcome of minimal residual disease-defined low-risk patients is sustained with more than 10 years follow-up: results of UK paediatric acute lymphoblastic leukaemia trials 1997–2003

Abstract

Background Minimal residual disease (MRD) is defined as the presence of sub-microscopic levels of leukaemia. Measurement of MRD from bone marrow at the end of induction chemotherapy (day 28) for childhood acute lymphoblastic leukaemia (ALL) can highlight a large group of patients (>40%) with an excellent (>90%) short-term event-free survival (EFS). However, follow-up in recent published trials is relatively short, raising concerns about using this result to infer the safety of further therapy reduction in the future.

Methods We examined MRD data on 225 patients treated on one of three UKALL trials between 1997 and 2003 to assess the long-term (>10 years follow-up) outcome of those patients who had low-risk MRD (<0.01%) at day 28.

Results Our pilot data define a cohort of 53% of children with MRD <0.01% at day 28 who have an EFS of 91% and long-term overall survival of 97%. Of 120 patients with day-28 MRD <0.01% and extended follow-up, there was one death due to treatment-related toxicity, one infectious death while in complete remission, and four relapse deaths.

Conclusions The excellent outcome for childhood ALL in patients with MRD <0.01% after induction chemotherapy is sustained for more than 10 years from diagnosis. This supports the potential exploration of further reduction of therapy in this group, in an attempt to reduce treatment-related mortality and late effects.

  • Haematology
  • Oncology
  • Molecular Biology
  • Outcomes research
  • Paediatric Practice

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Linked Articles

  • Atoms
    Nick Brown