Daily versus As-Needed Inhaled Corticosteroid for Mild Persistent Asthma*

*The Helsinki Early Intervention Childhood Asthma Study

Markku Turpeinen, M.D., PhD,¹ Kurt Nikander, B.A.,² Anna S. Pelkonen, M.D., Ph.D.,¹ Pirkko Syvänen, M.D.,¹ Ritva Sorva, M.D., Ph.D.,¹ Hanna Raitio, M.D., Ph.D.,¹ Pekka Malmberg, M.D., Ph.D.,¹ Kaisu Juntunen-Backman, M.D., Ph.D.,¹ Tari Haahtela, M.D., Ph.D.¹

¹Department of Allergy, Helsinki University Hospital; Finland
²AstraZeneca R&D, Lund, Sweden

This study was done at the Department of Allergy at the Helsinki University Hospital.

Correspondence and reprint requests to:
Dr. M. Turpeinen
Skin and Allergy Hospital, Department of Allergy, Helsinki University Hospital
Meilahdentie 2, FIN-00250 Helsinki, Finland
Telephone: +358-19-2241, fax +358-19-224 2384, email: markku.t.turpeinen@hus.fi
Abstract

OBJECTIVE: To compare inhaled budesonide given daily or as-needed in mild persistent childhood asthma.

PATIENTS, DESIGN AND INTERVENTIONS: 176 children aged 5–10 years with newly detected asthma were randomized into three treatment groups: (1) continuous budesonide (400 µg twice daily for 1 month, 200 µg twice daily for Months 2–6, 100 µg twice daily for Months 7–18); (2) budesonide, identical treatment to Group 1 during Months 1–6, then budesonide for exacerbations as-needed for Months 7–18; and (3) disodium cromoglycate (DSCG) 10 mg three-times daily for Months 1–18. Exacerbations were treated with budesonide 400 µg twice daily for 2 weeks.

MAIN OUTCOME MEASURES: Lung function, the number of exacerbations and growth.

RESULTS: Compared with DSCG the initial regular budesonide treatment resulted in a significantly better improvement of lung function, fewer exacerbations and a small but significant decline in growth velocity. After 18 months, however, the lung function improvements did not differ between the groups. During Months 7–18, patients receiving continuous budesonide treatment had significantly fewer exacerbations (mean 0.97), compared with 1.69 in Group 2 and 1.58 in Group 3. The number of asthma free days did not differ between regular and intermittent budesonide treatment. Growth velocity was normalized during continuous low-dose budesonide and budesonide therapy given as needed. The latter was associated with catch-up growth.

CONCLUSIONS: Regular use of budesonide afforded better asthma control but more systemic effect than use of budesonide as needed. The dose of ICS could be reduced as soon as asthma is controlled. A proportion of children does not seem to need continuous ICS treatment.

(Word count: 263)

Key words: asthma, budesonide, clinical trial, early intervention, safety

Running title: Daily versus As-Needed Budesonide for Mild Persistent Asthma
Abbreviations used

ANOVA: analysis of variance
C.I.: confidence interval
CV: coefficient of variation
DSCG: disodium cromoglycate
ICS: inhaled corticosteroids
FEV$_1$: forced expiratory volume in 1 second
FVC: forced vital capacity
PEF: peak expiratory flow rate
PIF$_{\text{TBH}}$: the peak inspiratory flow via Turbuhaler™
pMDI: pressurized metered dose inhaler
SDS: standard deviation score
Introduction

Most children with asthma experience their first symptoms before 7 years of age (1). Studies of adults and children with asthma have shown that some functional reversibility may be lost if anti-inflammatory treatment is postponed (2-4). The anti-asthmatic effect of inhaled corticosteroids (ICS) has been demonstrated in long-term intervention studies (5-10), and these findings have led to ICS becoming the mainstay of treatment for persistent asthma (11,12). However, high-dose ICS may have systemic effects such as reduction in height velocity (6-8,13) and adrenal insufficiency (14).

In an 18-month intervention, we compared two budesonide therapeutic regimens with a control group treated with a fixed dose of disodium cromoglycate (DSCG). The study was designed to evaluate the anti-asthmatic efficacy and systemic effect of daily versus as-needed budesonide in the treatment of early, mild persistent asthma in children.

Materials and methods

Children between 5 and 10 years, all Caucasians, were included, if they presented symptoms like wheezing, prolonged cough or shortness of breath suggesting asthma for at least 1 month prior to entry into the study, and significant bronchial reversibility. The latter was defined as at least a 20% diurnal variation in repeatable peak expiratory flow (PEF) measurements, or at least a 15% increase in PEF at least three times within 2 weeks of home recording, or at least a 15% increase in forced expiratory volume in 1 second (FEV₁) 15 minutes after inhalation of a β₂-agonist, or at least a 15% decline in FEV₁ in an outdoor exercise test in the clinic (15). According to symptoms and lung function tests, the majority of children could be categorized as having mild persistent asthma (16). Children with acute asthma, an FEV₁ <50% (17) and with treatment during the preceding 2 months with ICS, cromones, leukotriene modifiers or long-acting β₂-agonists were excluded. The total cumulative doses of previously used ICS must not have exceeded 36 mg, 12 mg of nasal corticosteroids or oral doses equivalent to 200 mg prednisolone.

The 18-month study was of a controlled, randomized, double-blind, parallel-group, single-center design including a 2-week run-in period. Two blinded treatment regimens were initiated with inhaled budesonide via a dry-powder inhaler (Pulmicort Turbuhaler®, AstraZeneca, Lund, Sweden) and one open-label treatment regimen was initiated with DSCG via a pressurized metered dose inhaler (pMDI; Intal® with Fisonair® spacer, Aventis Pharma Ltd, Holmes Chapel, UK). Patients were randomized to treatment in balanced blocks as generated by a computer program. During the 2-week run-in period, all enrolled patients received a short-acting β₂-agonist, terbutaline (Bricanyl Turbuhaler®, 0.25 mg/dose, AstraZeneca, Lund, Sweden) as needed. After the run-in period, children were assigned to one of three treatment groups: (1) continuous budesonide group, receiving budesonide (400 µg twice daily for the first month, then 200 µg twice daily for 5 months) followed by low-dose budesonide (100 µg twice daily for 12 months); (2) budesonide/placebo group, where patients received identical budesonide treatment as Group 1 for the first 6 months followed by placebo for 12 months; and (3) DSCG control group, where patients received DSCG 10 mg three-times daily for 18 months (Figure 1).

All patients were given rescue medication of terbutaline 0.25 mg/dose as needed. For all groups, during exacerbations of asthma, study medication was replaced by budesonide 400 µg twice daily for 2 weeks. Children were withdrawn from the study and given individually tailored therapy if treatment of their exacerbations remained insufficient.

The study was performed in accordance with the Declaration of Helsinki, and was approved by the
local ethics committee. Written, informed consent was obtained from each patient’s parent(s) or legal guardian and from the patient.

For the budesonide treatment groups, treatment compliance was recorded using a home spirometer (Vitalograph Data Storage spirometer, Vitalograph Ltd, Buckingham, UK), which recorded the peak inspiratory flow via Turbuhaler™ (PIF TBH) each time a dose of the drug was taken (18). In the DSCG group, the returned pMDI drug canisters were counted and weighed every 3 months.

The primary efficacy variable was morning PEF. Secondary efficacy variables were FEV₁, the number of asthma exacerbations, asthma-free days and rescue medication use. Morning PEF was measured daily at home. FEV₁ was measured at the clinic visit every third month. An asthma exacerbation was defined as an increase in symptoms that were not controlled with 6 doses of rescue terbutaline per 24 hours which caused the parent to contact the clinic. All parents were provided with a 24-hour emergency telephone number. At the clinic, patients were examined by a pediatrician, who decided whether an exacerbation had occurred and, if so, replaced the regular medication with a 2-week course of budesonide 400 µg twice daily. The treatment of an exacerbation was considered insufficient if the symptoms did not subside during the 2-weeks’ budesonide inhalations which caused the parent to contact the clinic. If an oral or parenteral corticosteroid was needed, the child received individual treatment and was withdrawn from the study.

All patients recorded daily their PEF rate, as measured by a home spirometer, before taking study medication. They also recorded their asthma symptoms using a visual analog scale (0–10), and use of rescue medication. An asthma-free day was defined as a 24-hour period without use of rescue medication and with a symptom score <2. Standard laboratory spirometry (Spirotrac III, Vitalograph Ltd) was performed at all clinic visits (19).

The primary indicator of systemic effect was the standing-height velocity, which was measured at each clinic visit using a stadiometer (Holtain Ltd, Crymych, UK) following a standardized procedure. Children with Tanner stage I-II at baseline were included. Tanner stage of sexual development is scored from I (preadolescence) to V (adult characteristics) (20). Standing height was compared with Finnish reference values (21). Other indicator was body mass index (kg/m²).

The sample size was determined by power calculations for morning PEF. A clinically significant change was assumed to be 40 L/min over 18 months period. With 60 patients per treatment group there was a 90% chance of detecting a difference of 24 L/min between treatments. The analysis of growth was performed on the complete study population (excluding pubertal children). All other variables were analyzed using intention-to-treat principles, that is, all patients who had taken at least one dose of study medication and had data for the required period(s). Withdrawn patients were handled using last value extended, within period. Comparisons for Months 1–6 were made between the combined budesonide groups and the DSCG group; comparisons from 7 to 18 months were made between all three groups.

For most variables, treatment groups were compared using analysis of variance (ANOVA) with fixed factor treatment and baseline values as covariates. For growth variables, sex was included as an additional factor in the analysis. Time to first asthma exacerbation and time to withdrawal were compared using the log-rank test. The number of exacerbations was compared using a Poisson regression model with fixed factor treatment, time in study as an offset, and adjustments made for overdispersion.

Results
A total of 176 children were enrolled in the study. There were no significant differences between treatment groups in any baseline measures (Table 1). During the run-in period, the mean use of terbutaline was about 1 dose/2 days in all treatment groups. Three patients were withdrawn because of asthma deterioration during continuous budesonide treatment after 6 months of the study. In the Bud/placebo group, 9 children were withdrawn because of asthma deterioration, similarly, all after 6 months of treatment. In the DSCG group, 8 children were withdrawn during the first 6 months of the study, and 4 children thereafter (continuous budesonide vs. DSCG; p=0.026). One child on placebo and 1 child on DSCG were hospitalized, because of deterioration of asthma. The numbers of patients withdrawn from the treatment groups for reasons not related to asthma were 3 in the continuous budesonide group, 3 in the budesonide/placebo group, and 4 in the DSCG group. The flow of the participants through the trial is presented in the Figure 2. The mean treatment compliance for the three treatment groups decreased linearly from an initial level of ~90% to a mean level of ~60% towards the end of the study. This was matched by a subsequent reduction in the amount of drug used during the study. Children in the continuous budesonide and budesonide/placebo treatment groups achieved a mean PIF_{TH} of 60 L/min during the study period.

After 6 months, the morning PEF values (L/min) of the budesonide groups improved by 6.6% and by 6.1% in the DSCG group. After 18 months, the increase was 10.3% in the continuous, 10.0% in the budesonide/placebo and 12.5% in the DSCG group. No significant differences were observed between the groups at any time point. After 6 months of treatment, improvement in FEV₁ in liters in the clinic was significantly greater in the budesonide groups than in the DSCG group (9.6 vs. 5.9%; p=0.012). From baseline to 18 months, FEV₁ improved by 18.2%, in the continuous, by 16.9% in the budesonide/placebo and by 17.3% in the DSCG group without any significant differences.

Over the 18-month study period, 364 exacerbations of asthma were recorded in 133 patients. During the first 6 months of treatment, children receiving budesonide had significantly less exacerbations compared with children in the DSCG group (Table 2). During Months 7–18, the continuous budesonide group (i.e. children on low-dose budesonide) had significantly fewer exacerbations than either the budesonide/placebo group (i.e. children given placebo) or the DSCG group (Table2).

The median time to the first exacerbation was significantly longer for both the continuous budesonide (344 days) and the budesonide/placebo (268 days) groups compared with the DSCG group (78 days) (p<0.001 for each) (Figure 3). After 180 days, the median time to the next exacerbation was 233 days for the continuous budesonide group, 138 days for the budesonide/placebo group (i.e. during placebo) and 131 days for the DSCG group (continuous budesonide and DSCG; p=0.03).

At 6 months, the mean number of asthma-free days increased more in budesonide group than in the DSCG group (Table 3). During Months 7-18, the mean number of symptom free days increased significantly more in the continuous budesonide group than in the DSCG group.

During the first 6 months, compared with the run-in period, both budesonide groups used significantly less rescue terbutaline (-0.29 doses/day) than the DSCG group (-0.07 doses/day) (p=0.012). During Months 7-18, the decline was -0.29 doses/day in the continuous budesonide group, -0.22 doses/day in the budesonide/placebo group and -0.18 doses/day in the DSCG group with no significant differences between the groups.

From baseline to 6 months, the mean standing-height velocity in the budesonide groups was 2 cm/year slower than in the DSCG group (p<0.001). From 7 to 18 months, height velocity increased in both budesonide groups, with the mean height velocity being greater for the budesonide/placebo group (i.e. during placebo) than the continuous budesonide group (6.2 vs. 5.6 cm; p=0.016). After 18 months
of treatment, children receiving DSCG had grown — on average — 1.0 cm more than children in the continuous budesonide group (8.8 vs. 7.8 cm; p = 0.008), and 0.6 cm more than children in the budesonide/placebo group (i.e. during placebo) (8.8 vs. 8.2 cm; p = 0.048). Development of standing height is presented as standard deviation scores (SDS) in the Figure 4. No significant differences in body mass index were observed between treatment groups at any time point.

Discussion

The artificial nature of the research protocol in our study, like in many other asthma studies with drug interventions, does not pay regard to the individual evolution of disease. Exclusion criteria used in the present study affect the selection of children. During the study, the selection was further affected by the withdrawal criteria. Furthermore, a “true” placebo group is impossible to arrange because asthma exacerbations cannot be left untreated, and glucocorticoids used for the treatment of exacerbations might influence the individual evolution of asthma.

We consider, that, clinically, the dominant phenotype of our children to be mild persistent asthma according to the present guidelines. Some children with moderate persistent asthma were included, as consecutive patients fulfilling the inclusion criteria were allocated to the treatment groups. Within the treatment groups, every patient received fixed doses for the predetermined time despite the individual phenotype of asthma. However, in our study, the treatment regimen could be modified individually by 2-weeks courses of budesonide given as needed.

Cessation of inhaled budesonide maintenance treatment has previously been shown to result in a worsening of disease and a decline in lung function in children with persistent moderate-to-severe asthma (22). In the present study of newly detected mild persistent asthma, a proportion of children had a low number of exacerbations during this intermittent treatment with budesonide. The exacerbation rate during Months 7 to 18 in this budesonide/placebo group was similar to the results in the DSCG group. In the present study, two weeks’ budesonide given when needed, after the initial regular treatment with budesonide, seems to produce an anti-exacerbation effect comparable with the continuous use of DSCG. However, most withdrawals in the DSCG were early in contrast to late withdrawals in the regular budesonide and budesonide/placebo groups. This might select more mild phenotypes of asthma to the DSCG group for the last 12 months of treatment and artificially improve the results of DSCG compared with placebo or low-dose budesonide treatments.

While treatment of patients in the DSCG group was open, exacerbations were diagnosed and treated in the same way as in the other two treatment groups. Treatment in the DSCG group was not associated with measurable systemic effects. However, it was associated with the highest number of asthma exacerbations and withdrawals from the study. The initially high number of exacerbations suggests that DSCG is not suitable to start treatment of newly detected childhood asthma.

No significant differences between treatment groups were observed in the morning PEF-values at any time point of the study. This suggests that morning PEF is not a very sensitive efficacy parameter in long-term studies in children with mild asthma as suggested previously (7). During the first 6 months of the study, FEV1 in liters improved significantly more in the budesonide groups than in the DSCG group. However, at the end of the study the differences in FEV1 disappeared despite significant differences in the number of exacerbations. This is in agreement with previous observations of changes in FEV1 in liters between the treatments with budesonide, nedocromil and placebo (7). The use of FEV1 values measured in liters has been recommended because predicted values depend on height which may be affected by ICS (7).
Our results confirm previous observations of a small initial decline in height velocity during treatment with ICS used at comparable doses, followed by normal height velocity (7). Decline in height velocity without catch-up growth has been recently observed even during regular low ICS dosage (8). However, another study suggests that children treated regularly with budesonide attain their predicted final adult height (23). In the present study, height velocity was dose-related; during the low-dose budesonide and placebo treatments, the systemic effect of the initial high-dose budesonide were reduced. In the present 18 months follow up study, standing height velocity was normalized during low-dose budesonide treatment within 1 year of commencement of treatment. The height velocity increased, however, more rapidly during the placebo treatment than during the low-dose budesonide treatment, suggesting catch-up of the initial loss in standing height.

While long-term maintenance therapy with low-dose ICS is recommended for mild persistent asthma (7, 8, 24,25), a portion of children does not seem to need continuous inhaled corticosteroid treatment. Advantages of this treatment strategy include a reduced risk of ICS-related growth suppression. Intermittent courses of inhaled or oral corticosteroids has been suggested recently for adults with mild persistent asthma (26).

Regular use of budesonide afforded better exacerbation control but more systemic effect than intermittent use of budesonide given as needed or regular DSCG treatment. No significant differences in the morning PEF and FEV1 in liters or in asthma free days were observed between the regular or intermittent budesonide treatments during Months 7-18. These findings suggest that the overall anti-asthmatic effect of the intermittent budesonide treatment might be intermediate between the regular low-dose ICS and DSCG treatments. The dose of ICS could be reduced as soon as asthma is controlled. A proportion of children does not seem to need continuous ICS treatment.

Acknowledgments

This study was conducted by the Department of Allergy, Helsinki University Central Hospital, and in co-operation with the Finnish Association of Allergology and Immunology.

The authors acknowledge the valuable contribution of the following participants in this study: Tuula Koljonen, Study Nurse; Leena Ingelin-Kuortti, Study Nurse; Eeva Kiiskilä, Study Monitor; Eva Holtås, Study Monitor; Thomas Bengtsson PhD, Biostatistician.

1Department of Allegy, Helsinki University Hospital, Finland
2AstraZeneca, Finland; and 3AstraZeneca R&D, Lund, Sweden

The study was sponsored by the Helsinki University Central Hospital (grant TYH 2303) and AstraZeneca, Lund Sweden.

No actual and potential conflicts of interests for any authors exist regarding this manuscript.
Licence for publication

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Archives of Disease in Childhood editions and any other BMJPL products to exploit all subsidiary rights, as set out in our licence. (http://adc.bmjournals.com/ifora/licence.dtl)
Figure legends

Figure 1.
Study design. The daily dose of budesonide was divided in two doses, DSCG in three doses.

Figure 2.
The flow of the participants through the trial.

Figure 3.
Kaplan-Meier plot of the time to first exacerbation for the continuous budesonide (O, n=57), budesonide/placebo (□, n=58) and disodium cromoglycate (∆, n=60) treatment groups during the 18-month study. The median time to the first exacerbation was significantly longer for both the continuous budesonide (344 days) and the budesonide/placebo (268 days) groups compared with the DSCG group (78 days) (p<0.001 for each). The vertical line indicates the time point (180 days) when budesonide treatment was changed to the low-dose regimen or to placebo. After 180 days, the median time to the next exacerbation was 233 days for the continuous budesonide group, 138 days for the budesonide/placebo group and 131 days for the DSCG group (continuous budesonide and DSCG; p=0.03).

Figure 4.
Mean change in standing height (SDS) over the 18-month study period for the continuous budesonide (O, n=50), budesonide/placebo (□, n=45) and disodium cromoglycate (DSCG) (∆, n=43) treatment groups. 1–6 months, both budesonide groups vs. DSCG, p<0.001; 7–18 months, continuous budesonide group vs. budesonide/placebo group, p=0.016. Note the fast height velocity during Months 7-18 in the budesonide/placebo group.
What is already known on this topic:
It is still debated whether mild asthma in adults needs regular treatment with inhaled corticosteroids.

What this study adds:
A portion of children who achieves good initial control of their mild asthma does not seem to need continuous treatment with inhaled corticosteroids.
References

13. Doull IJ, Freezer NJ, Holgate ST. Growth of pubertal children with mild asthma treated with

Table 1. Baseline characteristics of treatment groups

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Continuous budesonide (n=58)</th>
<th>Budesonide/ placebo (n=58)</th>
<th>Disodium cromoglycate (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>7.0 (5–10)</td>
<td>6.7 (5–10)</td>
<td>6.9 (5–10)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>59</td>
<td>66</td>
<td>54</td>
</tr>
<tr>
<td>Tanner pubertal stage I/II</td>
<td>58/1</td>
<td>58/1</td>
<td>61/2</td>
</tr>
<tr>
<td>Standing height (cm)</td>
<td>128.4 (108–157)</td>
<td>125.1 (106–148)</td>
<td>125.6 (105–148)</td>
</tr>
<tr>
<td>Standing height, standard deviation scores (SDS)</td>
<td>0.04 (-0.32–0.54)</td>
<td>0.03 (-0.30–0.39)</td>
<td>0.04 (-0.43–0.32)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>17.5</td>
<td>16.9</td>
<td>16.9</td>
</tr>
<tr>
<td>Skin prick test positive (n)</td>
<td>35</td>
<td>41</td>
<td>36</td>
</tr>
<tr>
<td>Duration of symptoms (months)†</td>
<td>12.8 (1.1–70.5)</td>
<td>11.3 (2.0–76.4)</td>
<td>11.7 (3.0–70.8)</td>
</tr>
<tr>
<td>Wheeze ever (n)</td>
<td>35</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>Asthma symptom score (0–10)‡</td>
<td>1.5 (0.0-5.5)</td>
<td>1.7 (0.0-4.5)</td>
<td>1.9 (0.0-5.7)</td>
</tr>
<tr>
<td>Rescue medication, dose / 24 h‡</td>
<td>0.47 (0–4.0)</td>
<td>0.55 (0–3.7)</td>
<td>0.68 (0–2.8)</td>
</tr>
<tr>
<td>Morning PEF rate (L/min)‡</td>
<td>182 (78–301)</td>
<td>176 (68–313)</td>
<td>184 (94–363)</td>
</tr>
<tr>
<td>Morning PEF (% predicted value)‡</td>
<td>76 (43–105)</td>
<td>77 (42–112)</td>
<td>79 (54–107)</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>1.43(0.89-2.15)</td>
<td>1.32 (0.72-2.36)</td>
<td>1.37 (0.63-2.45)</td>
</tr>
<tr>
<td>FEV₁ (% predicted value)</td>
<td>87 (57-111)</td>
<td>82 (52-107)</td>
<td>83 (57-107)</td>
</tr>
<tr>
<td>FVC (% predicted value)</td>
<td>90 (64-112)</td>
<td>87 (57-124)</td>
<td>89 (56–120)</td>
</tr>
</tbody>
</table>

*Values are means with range in parentheses, unless otherwise stated; †no correlation between duration of the symptoms and FEV₁; ‡Data from the run-in period.

Abbreviations: FEV₁ = forced expiratory volume in 1 second; FVC = forced vital capacity; PEF = peak expiratory flow rate.
Table 2. Number of exacerbation episodes

Months 1-6

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of patients analyzed*</th>
<th>Exacerbations/patient**</th>
<th>95% C.I.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budesonide</td>
<td>115</td>
<td>0.32</td>
<td>0.22 – 0.46</td>
<td></td>
</tr>
<tr>
<td>DSCG</td>
<td>60</td>
<td>1.24</td>
<td>0.95 – 1.63</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Months 7-18

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of patients analyzed*</th>
<th>Exacerbations per patient**</th>
<th>95% C.I.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bud/Bud</td>
<td>57</td>
<td>0.97</td>
<td>0.70 – 1.34</td>
<td></td>
</tr>
<tr>
<td>Bud/Placebo (Budesonide as needed)</td>
<td>58</td>
<td>1.69</td>
<td>1.31 – 2.18</td>
<td></td>
</tr>
<tr>
<td>DSCG</td>
<td>51</td>
<td>1.58</td>
<td>1.20 – 2.08</td>
<td></td>
</tr>
</tbody>
</table>

Bud/Bud vs. Bud/Placebo 0.008
Bud/Bud vs. DSCG 0.023
Bud/Placebo vs. DSCG 0.728

* The total effective number of patients analyzed; ** The mean number of exacerbations / the number of patients in the group.
Table 3: Asthma free days after run-in period (%)

Months 1-6

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of patients analyzed*</th>
<th>The mean change in asthma free days, % **</th>
<th>95% C.I.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budesonide</td>
<td>114</td>
<td>+20.1</td>
<td>(+ 14.9) – (+25.4)</td>
<td></td>
</tr>
<tr>
<td>DSCG</td>
<td>60</td>
<td>+4.1</td>
<td>(-3.2) – (+ 11.3)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* The total effective number of patients analyzed; **Mean change in asthma free days as compared with the base-line

Months 7-18

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of patients analyzed*</th>
<th>The mean change in asthma free days, %</th>
<th>95% C.I.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bud/Bud</td>
<td>55</td>
<td>+29.2</td>
<td>(+21.2) – (+37.2)</td>
<td></td>
</tr>
<tr>
<td>Bud/Placebo (Budesonide as needed)</td>
<td>58</td>
<td>+19.6</td>
<td>(+11.8) – (+27.4)</td>
<td></td>
</tr>
<tr>
<td>DSCG</td>
<td>51</td>
<td>+11.6</td>
<td>(+3.3) – (+19.9)</td>
<td></td>
</tr>
</tbody>
</table>

Bud/Bud vs. Bud/Placebo 0.092
Bud/Bud vs. DSCG 0.003
Bud/Placebo vs. DSCG 0.166

* The total effective number of patients analyzed; **Mean change in asthma free days as compared with the base-line
<table>
<thead>
<tr>
<th></th>
<th>Budesonide daily dose</th>
<th>2 weeks</th>
<th>DSCG daily dose</th>
<th>Run-in</th>
<th>2.-6.</th>
<th>7.-18.</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>800µg</td>
<td>400µg</td>
<td>200µg</td>
<td>30mg</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bud/Bud)</td>
<td>(Bud/Pla)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
Assessed for eligibility (n=193)

- Excluded (n=15)
 - Not meeting inclusion criteria (n=13)
 - Refused to participate (n=2)

Randomized (n=178)

Continuous budesonide
- Allocated to intervention (n=59)
- Received allocated intervention (n=58)
- Did not receive intervention (n=1)
 - Reason: non-compliance
- Discontinued intervention (n=6)
 - Reasons: asthma deterioration (n=3), non-compliance with study medication/procedures (n=2), adverse event (n=1)
- Available for efficacy analysis (n=58)
- Available for growth analysis (n=52)
 - Excluded from growth analysis (n=2); Reason: Tanner stage >2

Budesonide/Placebo
- Allocated to intervention (n=58)
- Received allocated intervention (n=58)
- Discontinued intervention (n=12)
 - Reasons: asthma deterioration (n=9), non-compliance with study medication/procedures (n=3)
- Available for efficacy analysis (n=58)
- Available for growth analysis (n=46)
 - Excluded from growth analysis (n=1); Reason: Tanner stage >2

Disodium cromoglycate
- Allocated to intervention (n=61)
- Received allocated intervention (n=60)
- Did not receive intervention (n=1)
- Discontinued intervention (n=16)
 - Reasons: asthma deterioration (n=12), non-compliance with study medication/procedures (n=4)
- Available for efficacy analysis (n=60)
- Available for growth analysis (n=44)
 - Excluded from growth analysis (n=1)
 - Reason: Tanner stage >2
Daily versus As-Needed Inhaled Corticosteroid for Mild Persistent Asthma* *The Helsinki Early Intervention Childhood Asthma Study
Markku Tapio Turpeinen, Kurt Nikander, Anna Pelkonen, Pirkko Syvänen, Ritva Sorva, Hanna Raitio, Pekka Malmberg, Kaisu Juntunen-Backman and Tari Haahela

Arch Dis Child published online July 18, 2007

Updated information and services can be found at:
http://adc.bmj.com/content/early/2007/07/18/adc.2007.116632

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Child health (3922)
Asthma (369)
Immunology (including allergy) (2018)
Drugs: respiratory system (111)
Editor's choice (146)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/