Characterisation of morbidity in a UK, hospital-based, obesity clinic

M A Sabin¹, A L Ford¹, J M P Holly¹, L P Hunt¹, E C Crowne² & J P H Shield²

¹University of Bristol
²Bristol Royal Hospital for Children

Corresponding Author:
J Shield
Consultant Senior Lecturer
Bristol Royal Hospital for Children
St Michael's Hill
Bristol
BS2 8BJ

Telephone: 0117 342 0159
Fax: 0117 342 0178
Email: j.p.h.shield@bristol.ac.uk

Key words: Obesity, impaired glucose tolerance, metabolic syndrome
Abstract

Aim: To identify clinical features which predict those most at risk of co-morbidities within an obesity clinic.

Methods: Children attending an obesity clinic had fasting glucose, insulin and lipids measured prior to a standard oral glucose tolerance test (OGTT). History and examination established birth weight, family history of Type 2 diabetes/obesity, pubertal status and presence of acanthosis nigricans. Central and total fat mass was estimated by bio-impedance.

Results: 10.3% (n=13) of children evaluated (n=126) had impaired glucose tolerance (IGT): the majority (11 or 85%) of these would not have been identified on fasting glucose alone. Those with IGT were more likely to have a parental history of Type 2 diabetes (Relative Risk 3.5). IGT was not associated with acanthosis nigricans. 25% (n=19) of those evaluated (n=75) had evidence of the “metabolic syndrome” (MS). HDL cholesterol and triglyceride levels were related to insulin sensitivity (HOMA-R, p=0.002 and 0.001) and HDL cholesterol was also related to birth weight SDS (p=0.01). We observed a trend for those with MS to have a lower birth weight SDS. The severity of obesity did not influence the likelihood of IGT or MS.

Conclusions: Significant numbers of obese children have associated co-morbidities. Analysis of fasting blood glucose samples alone is not satisfactory to adequately evaluate glucose homeostasis. The overall level of obesity does not predict co-morbidities. Special attention should be given to those with parental diabetes and a history of low birth weight who are more likely to have IGT and abnormal lipid profiles respectively.
Introduction

There is now good evidence that children and adolescents with significant obesity can manifest impaired glucose tolerance1, frank diabetes2 or the metabolic syndrome3,4. Furthermore, recent evidence suggests that impaired glucose tolerance can rapidly progress to overt diabetes and that this process and the worsening of insulin resistance and other features of the “metabolic syndrome” can be ameliorated by weight control5,6. The combination of limited clinical resources for the treatment of obesity with potentially more therapeutic options becoming available for therapy in adolescence7,8 necessitates a re-evaluation of our service provision. Greater emphasis may need to be placed on targeting those most at risk of co-morbidities associated with their obesity rather than obesity per se. With this in mind we examined how to best identify those likely to have impaired glucose tolerance or metabolic syndrome within our obesity clinic making them a priority for interventions as they become available. The aims of this study were therefore to characterise the metabolic status of children in our obesity clinic and identify factors that predict the clinical phenotype in terms of glucose homeostasis and the clustering of cardiovascular risk factors that constitute the “metabolic syndrome”.

Methods

All children were referred to our obesity clinic from either general practice or hospital colleagues with the referral criteria being solely a weight >99.6th centile for age and sex. On the first visit, each had a full history, including birth history and the presence of obesity and/or diabetes in either or both parents documented. They were then examined and formally staged for pubertal development by the method of Tanner and Whitehouse. Height was measured to the nearest 0.1 centimetre using a Harpenden Stadiometer, whilst weight was measured on SECA scales to the nearest 0.1 kilogram. Estimation of fat mass and regional fat distribution was performed using a Tanita Bioimpedance model \textit{BC-418MA}. BMI was calculated as weight (kg)/ height (m)2 and BMI Standard Deviation Score (BMI SDS – representing increases or decreases around the 50th percentile for age) was calculated using the British 1990 growth reference data supplied by the Child Growth Foundation. Obesity was defined as being present if the BMI SDS is greater than +2.37 in boys and +2.25 in girls; figures that have been derived by extrapolating the adult cut-off of 30kg/m2 back into childhood9. Blood pressure was measured in the sitting position using an oscillometric method (Dinamap vital signs monitor 8100) with an appropriate sized cuff for arm diameter. Fasting insulin levels were determined using either an ELISA method (DakoCytomation; Code No. K6219) or a two-site immunoradiometric assay10. Lipid analysis was performed using an Olympus Diagnostics System Group assay.

A measure of insulin sensitivity: Homeostatic Model Assessment Insulin Resistance (HOMA-R) was derived from the equation11:

\[
\text{Fasting glucose} \times \text{Fasting insulin} \over 22.5
\]

3
Split 32/33 pro-insulin was measured as part of the genetics of simple obesity study (GOOS) in Cambridge. Sampling for the GOOS study had local ethics committee approval and informed consent was obtained from the families.

The definition of the metabolic syndrome in adults has previously been unclear due to differences between the World Health Organisation definition and that described by the Adult Treatment Panel III guidelines. This has recently been clarified by the International Diabetes Federation who have issued a universal and up-to-date classification, describing the metabolic syndrome as being present if there is central obesity (using sex and ethnic specific waist circumference cut off points) along with any two of the following: raised triglycerides, reduced HDL cholesterol, raised blood pressure or raised fasting plasma glucose/ previously diagnosed Type II diabetes. Further details regarding this definition can be found at www.idf.org. However, at present, there are no established criteria for diagnosing the metabolic syndrome in childhood. We therefore chose to define the metabolic syndrome as being present if cases had a BMI SDS greater than 2.25 for females and 2.37 for males and two of the following: a systolic blood pressure greater than the 95th percentile for age (using established reference ranges for children obtained from 28,043 children in six North-West European countries), plasma triglycerides >1.2 mmol/l for those under 14 years and >1.7 mmol/l above 14 years, HDL < 0.9 mmol/l for males and <1.0 mmol/l for females and/or impaired glucose tolerance on OGTT. This was because, firstly, waist circumference cut-off points are less universally accepted than BMI SDS for the definition of obesity in childhood and secondly, as fasting blood glucose appears to poorly predict those with abnormal glucose metabolism we decided to use IGT on an OGTT to identify individuals with this condition.

Standard statistical tests were used throughout; group comparisons were made using two-sample Student’s t-tests (to compare means) and continuity-corrected Chi-squared tests (to compare proportions). Pearson’s correlation coefficients were calculated to study the relationship between pairs of continuous variables. A series of backward stepwise multiple linear regression analyses were used to look at the independent effects of several variables on serum HDL and triglyceride.

Insulin, HOMA-R, split pro-insulin 32/33 and triglyceride were each logarithmically transformed prior to analysis to remove skewness and render the data Gaussian. No satisfactory transformation could be found for blood glucose and non-parametric analyses were used for this variable.

Results

From 1998 onwards, 204 (55% female) children and adolescents have been seen with significant obesity in our clinic, with a mean age of 11.2 years (range 1.7-18 years), mean BMI of 33 (range 21.6-54) and mean BMI SDS of +3.52 (+2.3 to +6.33). The majority (195) were Caucasian, with the remaining 9 being either Black-African (2) or South Asian (7).

Of those, 126 had a standardised oral glucose tolerance test (1.75gm/kg to maximum of 75gms). This test was introduced into the clinic in 2001 in an attempt to better characterise glucose metabolism within this population. 10.3% (13) of these patients
had impaired glucose tolerance and none had clinical diabetes. Of the patients with IGT only 15% (2) would have been picked up as having abnormal glucose homeostasis by a measurement of fasting glucose alone (impaired fasting glucose). Whilst the number of non-Caucasian children were small, there was not a significantly higher prevalence of IGT within this group (1 of 6 (17%) non-Caucasian children, compared to 12 of 120 Caucasian white children (10%); p=0.6).

Insulin measurements were available for 104 out of the 126. Those with IGT had significantly higher fasting insulin levels than the remainder (geometric mean/range: 30.7, [15-59] vs 15.5, [2-109] mIU/L; Student’s t-test based on log-transformed values p<0.001) and HOMA-R assessments (geometric mean/range: 6.76, [3.07-11.8] vs 3.14, [0.37-18.89]; p<0.001). Fasting blood sugars were raised but the difference was not statistically significant (median/range 4.9, [4.3-5.7] vs 4.6, [3.1-6.6] mmol/l; Mann-Whitney U-test p=0.053). Acanthosis nigricans was present in 12.7% (26 of 204) of cases and was not associated with IGT (P>0.999), nor did it relate to fasting insulin levels or insulin resistance estimated by HOMAR in the larger cohort (data not shown). However, a parental history of diabetes was associated with an increased prevalence of IGT; 5 of the 19 (26.3%) with a family history had IGT compared to 7.5% (8) of the remaining 106 (Relative risk 3.5 [95%CI: 1.3-9.5]; P =0.039).

As there have been reports linking birth weight with obesity and abnormal glucose tolerance, we examined birth weight SDS in cases with IGT and found no significant difference to the rest of the clinic population. The mean SDS was –0.27, with a standard deviation 1.43. The distribution was close to the 1990 ‘standard’ (a Normal distribution with mean 0 and SD 1), although more children than expected were in the extreme tails; for example, 11.1% were below the 2.5th centile and 5% were above the 97.5th.

Seventy-five children had all of the necessary investigations to determine the presence/absence of the metabolic syndrome. Nineteen (25%) of the children were found to fulfil the criteria for diagnosis (Table 1).

Table 1 Factors used for classification of the Metabolic Syndrome

<table>
<thead>
<tr>
<th>Males (n=30)</th>
<th>Females (n=45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI SDS</td>
<td></td>
</tr>
<tr>
<td>>2.37 (male) or >2.25 (female)</td>
<td>30 45</td>
</tr>
<tr>
<td>Impaired glucose tolerance on OGGT</td>
<td>1 4</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td></td>
</tr>
<tr>
<td>≤ 0.9 (male) or ≤ 1.0 (female)</td>
<td>7 17</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td></td>
</tr>
<tr>
<td>>1.2 if age<14y or >1.7 if age≥14y</td>
<td>11 18</td>
</tr>
<tr>
<td>Systolic BP</td>
<td></td>
</tr>
<tr>
<td>>95th percentile</td>
<td>12 12</td>
</tr>
<tr>
<td>≥3 of the above factors</td>
<td>6 13</td>
</tr>
</tbody>
</table>

Those with the metabolic syndrome had reduced insulin sensitivity compared to those without: fasted insulin (geometric mean/range: 27.6 [9-109] vs 13.4 [2-53] mIU/L;
p=0.001) and HOMA-R (geometric mean/range: 5.66 [1.96-18.89] vs 2.84 [0.44-11.31] mIU/L; p=0.001), and had evidence of pancreatic dysfunction by analysis of the split pro-insulin 32/33 (geometric mean/range: 27.1 [11-76] vs 14.2 [4-50] pmol/l; p=0.026 but based on a smaller data set n=37). If those with both metabolic syndrome and impaired glucose tolerance were specifically excluded from the analysis, the split 32/33 pro-insulin, fasting insulin and HOMA-R levels in the others with metabolic syndrome remained significantly elevated compared to those without it. Metabolic syndrome was not significantly related to the severity of obesity (BMI SDS), total percentage body fat, central fat, acanthosis nigricans, age, sex, pubertal status and family history of diabetes or obesity (data not shown). Although the number of non-Caucasian children in this group was small (4 of 75), the prevalence of the metabolic syndrome was the same in both the Caucasian and non-Caucasian groups (18 of 71 (25%) of Caucasian children and 1 of 4 (25%) of non-Caucasian children). The mean birthweight SDS was slightly lower in the group with metabolic syndrome but the difference was not statistically significant (mean −0.64 (SD1.54) vs +0.12 (SD1.46); mean difference 0.76, [95%CI −0.06 to 1.78]; P=0.068)

We then investigated relationships between individual components of the metabolic syndrome, namely the lipids and systolic blood pressure, with potential predictor variables of age, sex, pubertal status, current BMI SDS, birth weight SDS and the log-transformed HOMAR, firstly using simple univariate analyses and then a series of backward linear regression analyses. On univariate analysis (not shown), HDL was found to be significantly negatively correlated with both age and HOMAR and positively correlated with birth weight SDS. None of the other variables, in particular gender, were significantly related to HDL. Regression analysis (see Table 2 for details) confirmed these relationships although age no longer reached statistical significance. Log-triglyceride was positively correlated with both age and HOMAR on univariate analysis but age was not significant in the multiple regression (Table 2). Systolic blood pressure was related solely to age (r=0.334; p=0.004). Results are summarised in Figure 1.

Table 2 Results of multiple linear regression analyses to predict HDL and log-transformed Triglyceride

<table>
<thead>
<tr>
<th>Predictors</th>
<th>HDL (mmol/l)*</th>
<th>Log10 (Triglyceride)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. (SE)</td>
<td>P</td>
</tr>
<tr>
<td>Constant</td>
<td>1.463 (0.102)</td>
<td>-0.212 (0.084)</td>
</tr>
<tr>
<td>Log10(HOMAR)</td>
<td>-0.241 (0.074)</td>
<td>P=0.002</td>
</tr>
<tr>
<td>Age (y)</td>
<td>-0.014 (0.008)</td>
<td>P=0.093</td>
</tr>
<tr>
<td>Birth weight SDS</td>
<td>0.047 (0.018)</td>
<td>P=0.010</td>
</tr>
</tbody>
</table>

*57 cases with complete information; multiple R=0.563
**65 cases with complete information; multiple R=0.499
Discussion

This report again emphasises the morbidity associated with obesity in our childhood population. Over 10% of the children and adolescents we have seen in the clinic have impaired glucose tolerance, a precursor to the development of diabetes and a defect in glucose homeostasis that may carry its own inherent risks. The level is less than that reported in multi-racial clinics from the USA where a level of around 25% has been reported. However, it is higher than that reported from some studies in Europe whilst being close to that found in others and very similar to that described by Viner et al (11%) from another UK clinic. This study also emphasises the importance of characterising obese children by the use of a formal oral glucose tolerance test rather than simple fasting glucose levels that detect few of the patients who actually have abnormal glucose metabolism and who are at greatest risk of Type 2 diabetes. Within a clinical setting it is interesting to note that acanthosis nigricans, a brown velvety rash often seen under the arms, on the knuckles and around the neck was not a good predictor of either hyper-insulinaemia nor impaired glucose tolerance in our cohort. Some have reported that this overt and easily recognisable clinical sign is a good predictor of IGT and hyper-insulinaemia, but these reports were in Japanese and Native American groups, whilst others have doubted its true predictive value. It seems that the weight of evidence appears to be against the predictive nature of this manifestation, at least in children of Caucasian origin. Importantly, a factor that does seem to have some value as a discriminator of risk is a parent with Type 2 diabetes and this has been described before but has not been universally acknowledged.

The well-documented relationship between birth weight (both large and small for gestational age) in terms of risk for metabolic syndrome and diabetes led us to explore whether these groups were over-represented in our clinic population or in terms of risk for IGT or metabolic syndrome. The actual distribution and mean birth weight SDS of patients referred with obesity to the clinic was very similar to that of the normal population whilst those with IGT had similar weight Z-scores to those without. Interestingly we did see a trend for those with metabolic syndrome to be smaller than those without (mean BMI SDS –0.64 (SD1.54) vs 0.12 (SD1.46)) but this did not reach statistical significance (p=0.068). However, we were able to demonstrate that there was a clear association between low birth weight and low HDL cholesterol a finding that has been documented before in the literature and seems to be one of the links between low birth weight and increased cardiovascular morbidity.

Twenty-five percent of those studied in our cohort had evidence of the metabolic syndrome, a clustering of cardiovascular risk factors linked to increased morbidity and mortality in adult life. Those children with metabolic syndrome without impaired glucose tolerance also had evidence of pancreatic dysfunction manifest as a raised split pro-insulin in addition to hyper-insulinaemia suggesting an increased risk of developing Type 2 diabetes at a later date. Equally worryingly, the clustering of dyslipidaemia, systolic hypertension and obesity as seen in many of our children, is associated with an increased generation of fibrous plaques in the coronary arteries of adolescents and children with cumulative effects being seen for each additional abnormality. We were unable to demonstrate any association between the presence of the metabolic syndrome and either the degree of obesity, total percentage body fat, central fat, acanthosis nigricans, age, sex, pubertal status and family history of diabetes or obesity. However, this may have been due to the relatively small number of patients studied.
of children identified with this condition and future studies in larger groups are warranted to investigate whether such associations exist.

A significant proportion of our childhood obesity clinic has either impaired glucose tolerance or the metabolic syndrome. Our prevalence levels mirror those described by Viner et al from a separate UK clinic suggesting that these levels are probably a true reflection of the situation in the country generally.

Recently, a number of pharmacological agents have undergone trials in adolescents with evidence of benefit in terms of weight loss, improving lipid profiles, insulin sensitivity and blood pressure whilst other studies have demonstrated benefit to morbidity with weight loss (BMI SDS loss > 0.5) or weight maintenance whatever the intervention. In order to characterise those most likely to benefit from a more intensive approach to obesity we need sufficient information on which to base such decisions. The measurement of fasting glucose alone seems inadequate to characterise glucose homeostasis within childhood and we advocate assessment by oral glucose challenge. Furthermore, we believe acanthosis nigricans is a poor clinical marker of any liability to abnormal glucose tolerance but that those with a family history of Type 2 diabetes warrant special attention and further investigation. We also provide some evidence that obese children with a low birth weight are more liable to have features of the metabolic syndrome and probably also deserve special attention.
Acknowledgements
MS is a Diabetes UK Clinical Training Fellow (BDA:RD 03/0002642). We would also like to thank Dr Janet Stone in the Clinical Chemistry Dept at the Bristol Royal Infirmary for her help with the determination of biochemical markers and Professor S O’Rahilly and Dr S Farooqi for the determination of split 32/33 proinsulins as part of their Genetics of Obesity Study.

Competing Interests
Dr Shield has provided paid consultancy to Roche, Abbott and NovoNordisk Pharmaceuticals.

Licence Statement
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Archives of Disease in Childhood editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence.

What is already known
- Childhood obesity is associated with increased co-morbidities such as impaired glucose tolerance and the “Metabolic Syndrome”.
- A family history of diabetes may be important to the development of abnormal glucose homeostasis.
- Birth weight may impact upon the metabolic syndrome and dyslipidaemia

What this study adds
- It confirms figures from another UK clinic of the prevalence of impaired glucose tolerance and metabolic syndrome in children attending an obesity clinic
- It demonstrates the clinical importance of an oral glucose tolerance test to examine glucose metabolism fully
- It casts doubt on the clinical significance of acanthosis nigricans
- It suggests that birth weight influences HDL cholesterol independent of obesity
- It demonstrates that a family history of Type 2 diabetes influences glucose metabolism in obese children
References

Total no. of children seen in the clinic
n=204

No. of children who underwent an OGTT
n=126

No. of children who had all investigations necessary for the diagnosis of the Metabolic Syndrome (MS)
 n=75

No. with IGT
n=13
(10.3%)

No. without IGT
n=113
(89.7%)

No. with MS
n=19
(25%)

No. without MS
n=56
(75%)

No. with IFG
n=2
(15%)

No. without IFG
n=11
(85%)

No. with IFG
n=3
(3%)

No. without IFG
n=110
(97%)
Characterisation of morbidity in a UK, hospital-based, obesity clinic

Matthew A Sabin, Anna L Ford, Jeffrey M P Holly, Linda P Hunt, Elizabeth C Crowne and Julian P H Shield

Arch Dis Child published online October 24, 2005

Updated information and services can be found at: http://adc.bmj.com/content/early/2005/10/24/adc.2005.083485.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Health education (555)
- Health promotion (611)
- Obesity (nutrition) (325)
- Obesity (public health) (325)
- Child health (3922)
- Diet (325)
- Dermatology (377)
- Diabetes (339)
- Epidemiologic studies (1818)
- Metabolic disorders (761)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/