G160 ## ASSOCIATION BETWEEN EXTERNAL AND INTERNAL DOSE OF DIESEL SOOT (BLACK CARBON) IN HEALTHY SCHOOLCHILDREN: A PILOT STUDY doi:10.1136/archdischild-2013-304107.172 ¹S Hussain, ²J Grigg, ²N Mushtaq, ²I Dundas, ²R Brugha. ¹School of Medicine, University of Cambridge, Cambridge, UK; ²Centre for Paediatrics, Barts and The London School of Medicine and Dentistry, London, UK **Aims** Exposure to diesel soot (black carbon, BC) is linked to adverse health in children. A cross-sectional study reported that BC in airway macrophages (AM BC), a marker of inhaled dose of diesel soot, is associated with decreased lung function in healthy children [1]. These data are compatible with the reduction in growth of lung function associated with long-term exposure to elemental carbon reported in an 8 year epidemiological study of schoolchildren [2]. To date, the determinants of AM BC are unknown. This is an important evidence gap since it is unclear whether policy-makers should target background BC, or peaks of freshly generated BC from roads. Using a newly developed portable monitor for BC, we sought to determine whether peaks in BC exposure are associated with airway macrophage black carbon (AM BC) in healthy schoolchildren. **Methods** Sputum inductions were carried out at schools as previously described [1]. Following processing, mean AM BC (µm²) for 50 randomly selected AM was calculated using Image I software. Personal exposure to BC was measured by a portable aethalometer (MicroAeth AE51, Magee Scientific). This monitor continuously samples BC in the air and data is downloaded after 24 h using the microAethCOM PC-based software (Fig 1). The number of peaks of BC above 10000 ng/300 sec was determined for each child by inspection of the 24 h plot. **Results** Twenty three children underwent sputum inductions. In the 15 children (65%) who produced sufficient AM for analysis, the median AM BC was 0.26278 μm^2 (interquartile range (IQR) of 0.16164 to 0.42842 μm^2). Personal 24 hour BC data was obtained in 13/15 children. The median BC exposure was 783758 ng (IQR: 336583.5 to 1321364.5 ng). Exposure peaks were caused by the school journey and cooking. No significant correlation was found between the number of peaks of carbon exposure above 10000 ng/300 sec and average AM BC (μm^2) (Fig 2). However the positive association (r = 0.40, Pearson coefficient) suggests that this pilot study may be underpowered. **Conclusion** Linking external and inhaled dose of BC is feasible in schoolchildren, and may provide important insights into the determinants of inhaled dose of BC. ## REFERENCES - Kulkarni N, Pierse N, Rushton L, Grigg J. "Carbon in airway macrophages and lung function in children." The New England Journal of Medicine 6, 355 (2006): 21–30. - Gauderman, WJ, E Avol, F Gilliland, H Vora, D Thomas, K Berhane, R McConnell, N Kuenzli, F Lurmann, E Rappaport, H Margolis, D Bates and J Peters. "The effect of air pollution on lung development from 10 to 18 years of age." The New England Journal of Medicine 351, 11 (2004): 1057–1067. Abstract G160 Figure 1 Example 24 hour aethalometer trace. Peaks are associated with daily commute (1 and 3) and cooking (2). **Abstract G160 Figure 2** Scatter graph showing AM BC vs. number of BC exposure peaks above 10000 ng/300 sec The correlation coefficient for the number of peaks above 10000 ng/300 sec against AM BC (r=0.4028, n=13, p=0.1724) shows a non-significant positive correlation.