measured 2 hours after the initiation of intravenous PGE1 were slightly increased compared to levels before initiation of intravenous PGE1 (<0.05).

Discussion Although intravenous PGE1 is more effective than oral PGE1 in short term usage, oral PGE1 is also sufficiently effective in keeping the ductus open. For this reason until the intravenous PGE1 is supplied oral PGE1 may be used as an alternative treatment choice. We think that in long term use oral PGE1, which is cheaper and easy to use, could be used instead of intravenous PGE1 without need of admission to hospital and opening intravenous line.

Background and Aim of study Frequently in low-birth-weight infants, ductus arteriosus fails to close spontaneously. This study evaluates the results of surgical ligation of symptomatic PDA in low birth weights preterms.

Methods We reviewed the medical records of all infants undergoing surgical closure of PDA from 2000 to 2010. Demographic data, weight at operation, respiratory assistance pre-operative, surgical technique to close PDA and outcome were analyzed.

Results Thirty infants underwent surgical closure of PDA in which either indomethacin or ibuprofen treatment had failed or was contraindicated. The mean GA was 27 and the mean birth weight was 752 g. The average weight at operation was 790.5 g. PDA was surgically closed by left thoracotomy using hemoclips.

Postoperative complication occurred in 4 patients, which included intraoperative bleeding (1), pneumothorax (1), lymphatic leak (2). No vocal cord paralysis nor diaphragmatic paralysis were included intraoperative bleeding (1), pneumothorax (1), lymphatic leak (2). No vocal cord paralysis nor diaphragmatic paralysis were included. Retrospective data was collected from the case records, SEND neonatal database and laboratory result systems.

Conclusion We conclude that surgical closure of hemodynamically significant PDA is safe and effective in preterm low birth weight infants when pharmacological treatment is ineffective or contraindicated. The associated morbidity is minimal and no surgery-related mortality was observed.

Severe congenital heart defects might be symptom free in first days of life. Therefore only half of the congenital heart defects were diagnosed in neonatal period.

In six years period, 86 neonates with the diagnosis of cyanotic congenital heart defects out of 5672 neonates hospitalized in our unit were evaluated. Neonates with the diagnosis of Down syndrome, trisomies and major congenital defects other than heart were excluded from the evaluation. Mean gestational weeks and birth weights of the neonates were 39, 3 (35–40) week and 3128 g. The average weight at operation was 790.5 g. PDA was surgically closed by left thoracotomy using hemoclips.

Postoperative complication occurred in 4 patients, which included intraoperative bleeding (1), pneumothorax (1), lymphatic leak (2). No vocal cord paralysis nor diaphragmatic paralysis were included. Retrospective data was collected from the case records, SEND neonatal database and laboratory result systems.

Conclusion We conclude that surgical closure of hemodynamically significant PDA is safe and effective in preterm low birth weight infants when pharmacological treatment is ineffective or contraindicated. The associated morbidity is minimal and no surgery-related mortality was observed.

Severe congenital heart defects might be symptom free in first days of life. Therefore only half of the congenital heart defects were diagnosed in neonatal period.

In six years period, 86 neonates with the diagnosis of cyanotic congenital heart defects out of 5672 neonates hospitalized in our unit were evaluated. Neonates with the diagnosis of Down syndrome, trisomies and major congenital defects other than heart were excluded from the evaluation. Mean gestational weeks and birth weights of the neonates were 39, 3 (35–40) week and 3128 g. The average weight at operation was 790.5 g. PDA was surgically closed by left thoracotomy using hemoclips.

Postoperative complication occurred in 4 patients, which included intraoperative bleeding (1), pneumothorax (1), lymphatic leak (2). No vocal cord paralysis nor diaphragmatic paralysis were included. Retrospective data was collected from the case records, SEND neonatal database and laboratory result systems.

Conclusion We conclude that surgical closure of hemodynamically significant PDA is safe and effective in preterm low birth weight infants when pharmacological treatment is ineffective or contraindicated. The associated morbidity is minimal and no surgery-related mortality was observed.

Severe congenital heart defects might be symptom free in first days of life. Therefore only half of the congenital heart defects were diagnosed in neonatal period.

In six years period, 86 neonates with the diagnosis of cyanotic congenital heart defects out of 5672 neonates hospitalized in our unit were evaluated. Neonates with the diagnosis of Down syndrome, trisomies and major congenital defects other than heart were excluded from the evaluation. Mean gestational weeks and birth weights of the neonates were 39, 3 (35–40) week and 3128 g. The average weight at operation was 790.5 g. PDA was surgically closed by left thoracotomy using hemoclips.

Postoperative complication occurred in 4 patients, which included intraoperative bleeding (1), pneumothorax (1), lymphatic leak (2). No vocal cord paralysis nor diaphragmatic paralysis were included. Retrospective data was collected from the case records, SEND neonatal database and laboratory result systems.

Conclusion We conclude that surgical closure of hemodynamically significant PDA is safe and effective in preterm low birth weight infants when pharmacological treatment is ineffective or contraindicated. The associated morbidity is minimal and no surgery-related mortality was observed.
Background and Aims Major congenital heart disease (CHD) is defined as CHD that needs operative or catheter based intervention in the first year of life. National institute of clinical excellence (NICE) in March 2008 recommended screening of outflow-tracts in addition to four-chamber view as part of the anomaly scan to improve CHD detection rates. We aimed to examine the clinical spectrum of antenatally and postnatally diagnosed major CHD in our institute pre- and post-introduction of NICE guideline.

Methods This is a retrospective review over six years from Jan 2006 to Dec 2011. Data was obtained from antenatal records, patient’s clinical and electronic records.

Results A total of 74 babies had major CHD diagnosed out of which 37 (50%) were diagnosed antenatally. Antenatal diagnosis pre- and post- NICE guidelines were 12/29 (41%) and 25/45 (55%) respectively as also termination of pregnancies with critical CHD doubled. Common postnatal presentations included cardiovascular collapse 4 (11%), cyanosis 8 (22%), murmurs 12 (32%), heart failure doubled. Successful closures 26 had initial platelet counts of >150 µmol/L, evoked endothelium-dependent relaxation of the DA.

Conclusions Successful closure after medical treatment was not related to the platelet counts in our study group.

Abstracts

1133 ANTE NATAL VS POSTNATAL DETECTION OF MAJOR CONGENITAL HEART DISEASE IN A LARGE DISTRICT-GENERAL HOSPITAL IN UK; A SIX-YEAR REVIEW

1135 CORONARY ARTERY ANATOMY PRIOR TETRALOGY OF FALLOT SURGERY

1134 PROTEASE-ACTIVATED RECEPTOR (PAR)-MEDIATED CONTRACTION OF THE CHICKEN DUCTUS ARTERIOSUS

1136 MORPHOHEMODYNAMIC MONITORING OF PULMONARY ARTERY IN PREMATURE INFANTS
1132 The Effect of Platelet Count on Successful Medical Closure of Patent Ductus Arteriosus

P Nath, M Avondo and R Roy

Arch Dis Child 2012 97: A324-A325
doi: 10.1136/archdischild-2012-302724.1132

Updated information and services can be found at:
http://adc.bmj.com/content/97/Suppl_2/A324.4

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/