morphogenesis. Their prevalence is estimated between 0.4 and 0.6% of live births. CHD is essentially multifactorial. Among the genetic causes, chromosomal aberrations are involved in congenital heart disease. Indeed, among patients who carry chromosomal abnormalities, 30% have cardiovascular problems. 22q11.2 microdeletion is the most common cause.

The purpose of this study was to determine whether subtle chromosomal anomalies previously undetected by conventional cytogenetic banding methods could be identified by array-CGH in children with isolated CHD. We reported 30 unrelated newborns recruited from Neonatology service for genetic exploration.

Genetic investigations are essentially based on the techniques of cytogenetics and molecular cytogenetics. At first introduction banding karyotyping was performed followed by fluorescent in situ hybridization (FISH) using gene-specific probe TUPLE1 in 22q11.2. As a last resort comparative genomic hybridization CGH-array 44K (Agilent® Technology) has been performed for 4 patients.

FISH showed normal hybridization to the DiGeorge syndrome critical region for all patients and no copy number variations was detected by array-CGH.

Our analysis was limited by a small and heterogenous study population. Also Increasing resolution arrays are needed to detect cryptic rearrangements.

We propose this strategy to explore a wider group of patients to identify new genetic factors involved in the development of cardiac malformations. The identification of genetic etiologies for CHD is important to provide genetic counseling and to establish a report genotype phenotype for every type of heart disorder.

738 Molecular Characterization of Der (8) (qter20q13: pterp23.3) Dn in a Child Association Psychomotor Retardation, Hydrocephalus and Facial Dysmorphism

740 Duplication of the Sox3 Gene in a SRY Negative 46, XX Male

739 18q22 Monosomy: Genotype-Phenotype Correlation and Therapeutic Impact

1M Kammoun, 1H Hannechi, 1H Hajaoui, 1H Sowla, 1D Hmida, 1A Saad, 1S Mougu, 1Departments of Cytogenetics and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse; 1Pediatric Department, Taher Star Hospital, Mahdia, Tunisia

The deletion of the long arm of chromosome 18 causes a contiguous gene deletion syndrome with a highly variable phenotype, usually related to the extent of the deleted region. The most commonly reported clinical features include: mental disabilities, decreased growth, microcephaly and facial abnormalities.

We report on a case with partial monosomy 18q22 derived from a maternal reciprocal translocation t(8; 18). The patient was 7 months old referred for genetic exploration of neurodevelopmental delay, craniofacial dysmorphism, post natal growth retardation, choanal atresia, club foot and congenital hip dislocation.

Chromosome analysis from peripheral blood showed a 46, XY, der (18). Array CGH was performed and revealed a partial monosomy 18q21.33q22.31 of 15.3MB associated with partial trisomy 8q24.12q24.23 of 22.7MB region. These results were confirmed by FISH using telomeric 18q probe.

Choanal atresia and skeletal malformation are in agreement with the monosomy 18q. Interestingly, the deletion includes GALR1 gene in 18q23 which encodes galanin receptor. Galanin is a neuromodulator that stimulates growth hormone secretion. MBP, and adjacent genes, are implicated in myelination process and haploinsufficiency explains partially developmental delay. Otherwise, the haploinsufficiency of the 18q22.3-q23 gene region is suggested to be a critical region for the immunoglobulin A deficiency which is significantly associated to celiac disease. Our patient has not until now immunological disorders.

The association deletion 18q22- GH deficiency and decreased myelination is now well established. The real therapeutic impact of GH treatment is discussed.

Abstracts

Complex but balanced chromosomal rearrangements can give rise, through recombination during meiosis, to complex unbalanced rearrangements. Here, we report on the case of a 21 months old child associating a 8q21.13 duplication and 8p23.3 microdeletion. The propositus was referred to our lab for cytogenetic exploration of a hydrocephalus associated with facial dysmorphism. He had also psychomotor retardation and microcephaly. The patient R-banding karyotype revealed a partial trisomy 8q captured by the p telomere of the same chromosome, whereas the parents’ karyotypes were normal. CGH-array technique characterized breakpoints and estimated its size to 61.8 Mb. Interestingly, an additional cryptic loss of 260 Kb in 8p23.3-pter was also identified by the same technique. These anomalies were confirmed by FISH technique.

The partial deletion of a chromosome arm in combination with partial duplication of the other was evocative of a recombinant chromosome deriving from a parental pericentric inversion. We suggest, therefore that a parental pericentric prezygotic 8p23.3-q 21.15 inversion resulted in the complex unbalanced rearrangement of chromosome 8 in our patient. The clinical picture including hydrocephalus, inguinal hernia, long-term fever and psychomotor retardation, was described in patients with pure 8q2-pter duplication. However, the 8p23.3 microdeletion may contribute to the psychomotor retardation, microcephaly and some minor dysmorphic features. Here we emphasize the fact that the 8p microdeletion would be cytogenetically undetectable in the absence of CGH-array technique underlining the need of entire genome high-resolution analysis in patients with idiopathic mental retardation and/or birth defects even in abnormal conventional karyotype cases.
739 18Q22 Monosomy: Genotype-Phenotype Correlation and Therapeutic Impact

M Kammoun, H Hannechi, H Hajlaoui, H Soua, D Hmida, A Saad and S Mougou

Arch Dis Child 2012 97: A213
doi: 10.1136/archdischild-2012-302724.0739

Updated information and services can be found at:
http://adc.bmj.com/content/97/Suppl_2/A213.2

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/