The black dotted line: Controls without BP (r=0.69, p<0.0001). The solid line: Preterm AGA without BP (r=0.38, p=0.11), the red dotted: preterms AGA with BP (r=0.06, p=NS).

At 9 years, preterm AGA with BP (n=13) had lower weight SDS (p=0.005), weight SDS (p=0.006) and head circumference SDS and a tendency to lower height catch-up (p=0.09) compared to preterm AGA without BP (n=18). Fasting levels of IGF-I, insulin and leptin were lower in all Preterms with BP.

Preterms with SP (n=8) had a lower height catch-up (p=0.009) compared to those without SP (n=30).

Conclusion Children born preterm have an increased risk for SP and BP. These disorders are associated with reduced catch up in height.

453 REPEAT COURSES OF ANTEnatal CORTICOSTEROIDS FOR PRETERM BIRTH AND RISK FOR METABOLIC SYNDROME IN YOUNG ADULTHOOD

doi:10.1136/archdischild-2012-302724.0453

1H Norberg, 2J Stalnacke, 3R Diaz Heijtz, 4AC Smedler, 5H Forsberg, 6M Norman. 1Department of Clinical Science, Intervention and Technology; 2Department of Women’s and Children’s Health, Karolinska Institutet; 3Department of Psychology, Stockholm University, Stockholm, Sweden

Background Preterm birth is associated with later hypertension and diabetes. One explanation for this association could be that exposure to antenatal corticosteroids (ACS), especially if repeated, induce adverse long-term effects. There are no data on whether repeat courses of ACS are associated with health problems later in life. The aim of this study was to assess whether repeat courses of ACS correlate to metabolic syndrome later in life.

Methods In a population-based cohort we measured BMI, blood pressure, arterial stiffness, blood lipids and glucose tolerance in 58 subjects (36 boys, age 14 to 26 years) exposed to 2–9 weekly courses of antenatal betamethasone. Subjects exposed to a single course (n=25, 14 boys) and unexposed subjects (n=44, 25 boys) were included as comparison groups.

Results As compared to unexposed controls, subjects exposed to repeat courses of ACS did not differ in BMI (mean difference 0.6kg/m², p=0.5), mean systolic or diastolic blood pressure (mean diff 1mmHg, p=0.78–0.83), arterial stiffness assessed by pulse wave analysis (mean diff 0.1%, p=0.50), triglyceride (mean diff 0.1mmol/L), total cholesterol (mean diff 0mmol/L), LDL/HDL ratio (mean diff 0.1), Lipoprotein(a) (mean diff 0.6mg/L), ApolipoproteinB/ApolipoproteinA1 ratio (mean diff 0.01), (p=0.33–0.91) or glucose tolerance assessed by HOMA-index (mean diff 0, p=0.84). Subjects exposed to a single course of ACS did not differ from the other groups in any of the variables above.

Conclusions Repeat courses of ACS do not correlate to metabolic syndrome in young adulthood. This observation has clinical implications for the ongoing discussion about safety of antenatal steroids.

455 IMPROVEMENT OF SERUM TESTOSTERONE IN DIABETIC RATS TREATED WITH METFORMIN AND NIGELLA SATIVA

doi:10.1136/archdischild-2012-302724.0455

1A Abd ElShaheed, 2KA El-Shamy, 3TH Meikael, 4F Adly, 6R Boulou, 5S Elbrahim, 6NN Fadi. 1Child Health; 2Physiology; 3Pathology, National Research Centre; 4Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt

Background and Aims To evaluate the effect of metformin and Nigella sativa (alone or in combination) on improving the diabetic state of rats.

Methods Male Sprague-Dawley rats weighing 180–200g had induced diabetes using alloxan (150 mg/kg), then diabetic rats were treated daily for 45 days with metformin (0.5g/Kg.b.wt), Nigella sativa (1g/Kg.b.wt) or a mixture of metformin + Nigella sativa (0.25g+1g/Kg.b.wt) in a separated three groups and compared with a group of alloxanized diabetic rats as control. HbA1c, serum glucose, lipid profile, microalbuminuria (MA), ALT, AST, insulin, SHBG and total testosterone were measured using ELISA & spectrophotometer techniques, tests and liver tissue were examined histopathologically.

Results Both metformin and Nigella sativa were comparable in reducing serum glucose of the diabetic rats, furthermore, Nigella sativa showed a hypolipidaemic effect and it also improved liver functions. The level of serum insulin was significantly increased (P<0.05) in three groups. Importantly, using the mixture of metformin and N.sativa was less effective in improving diabetic state than using metformin or N.sativa alone, although it had improved serum level of testosterone and normalized the structure of testis.

Conclusion Using either metformin or Nigella sativa alone was more effective in improving the diabetic state of rats than using them in combination, although this combination was more effective in improving both serum level of testosterone and the structure of testis. This raise basic questions about the effect of interactions that may occur on using this mixture in the treatment of diabetes that necessitate further studies.

454 HEPATIC GLYCOGENOSIS IN TYPE I DIABETES MELLITUS: REPORT OF TWO CASES AND REVIEW OF THE LITERATURE

doi:10.1136/archdischild-2012-302724.0454

LW de Groot, WB Geven. Pediatrics, Martini Hospital, Groningen, The Netherlands

Aim Hepatic glycerogenesis is an underrecognized cause of serum transaminase elevations in poorly controlled type I diabetes mellitus, which has a relatively benign course with appropriate treatment.1,2 Objective of this study is to describe the aetiology, clinical presenting symptoms and treatment options.

Methods A report of two adolescents with poor controlled diabetes mellitus, hepatomegaly and serum transaminase elevations and a literature review.

Results Both cases presented with abdominal pain and hepatomegaly, combined with nausea and dyspeptic complaints. Laboratory investigation revealed marked elevation of serum transaminase levels. Synthentic function of the liver stayed intact. Abdominal ultrasound showed isolated, homogenous hepatomegaly, without other abdomin- nal abnormalities. In one case liver biopsy was performed, showing hepatic glycerogenesis. Other causes for hepatomegaly were excluded. With improved diabetic control all complaints improved within three weeks, with normalisation of serum transaminase levels.

Review of literature that hepatic glycerogenesis, not frequently described, is an important complication of type I diabetes mellitus. Hepatic glycerogenesis as result of glycogen storage in hepatocytes, caused by periods of hyperglycaemia and frequent insulin boluses. This process is reversible with improved glycaemic control.1,2

Conclusions Hepatic glycerogenesis is an important complication of type I diabetes mellitus which can be reversible with the proper treatment. Therefore, medical attention is necessary.

References


453 Repeat Courses of Antenatal Corticosteroids for Preterm Birth and Risk for Metabolic Syndrome in Young Adulthood

H Norberg, J Stålnacke, R Diaz Heijtz, AC Smedler, H Forssberg and M Norman

Arch Dis Child 2012 97: A133
doi: 10.1136/archdischild-2012-302724.0453

Updated information and services can be found at:
http://adc.bmj.com/content/97/Suppl_2/A133.1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/