Deformational plagiocephaly: a follow-up of head shape, parental concern and neurodevelopment at ages 3 and 4 years

B L Hutchison,1 A W Stewart,2 E A Mitchell1

ABSTRACT

Objectives To compare head shape measurements, parental concern about head shape and developmental delays in infancy with measurements obtained at follow-up at ages 3 and 4 years.

Design Longitudinal cohort study.

Setting Initial assessments were conducted at a plagiocephaly clinic; follow-up assessments were conducted in the children’s homes.

Participants 129 children with a mean age of 4 years (range 3 years 3 months to 4 years 9 months), all of whom were diagnosed in infancy with deformational plagiocephaly or brachycephaly.

Main outcome measures Head shape measurements of cephalic index and oblique cranial length ratio; level of parental concern about head shape; and delays on parent-completed age-appropriate Ages and Stages Questionnaires.

Results 61% of head shape measurements reverted to the normal range; 4% remained severe at follow-up. Brachycephaly improved more than plagiocephaly. Facial and frontal asymmetry reduced to almost nil. Most had good improvement, but 13% were categorised as having ‘poor improvement’. Initially, 85% of parents reported being ‘somewhat’ or ‘very’ concerned; this decreased to 13% at follow-up. The percentage of children with ≥1 delay decreased from 41% initially to 11% at follow-up.

Conclusions Overall, head shape measurements, parental concern and developmental delays in infancy showed a dramatic improvement when re-measured at 3 and 4 years of age.

INTRODUCTION

A persistent resting head orientation either in the antenatal or in the postnatal period, or both, may expose the infant’s rapidly growing and malleable cranial bones to uneven compressive forces resulting in positional or deformational plagiocephaly or brachycephaly. Since the practice of supine sleeping for sudden infant death syndrome (SIDS) prevention has been more widely adopted, the condition has become more prevalent,1 with some infants developing alarmingly flat occipital areas in association with ear misalignment and compensatory flattening in other areas of the skull.

Spontaneous improvement can occur in the first 2 years.2 3 Risk factors include: male sex, firstborn child, difficult delivery, supine sleep position, multiple birth, prematurity and torticollis or other imbalance of neck muscle function.4 5 Some feel that the disorder is purely cosmetic,6 that the condition is ‘clinically unimportant’7 and that there are no negative neurologic consequences,8 but others have suggested that if not treated early the deformity may persist9–11 and that there may also be associated developmental difficulties in the longer term.12 13

Longer-term outcomes in infants with deformational plagiocephaly have rarely been studied. The few studies that have researched the topic have been limited by small samples and poor follow-up rates7 13 14 or did not use an objective measurement of head shape.7 15 16 No study has yet evaluated children treated exclusively with positioning strategies, including physiotherapy if warranted, and compared head shape measurements in infancy with those taken more than 2 years later.

Infants with deformational plagiocephaly/brachycephaly have higher rates of developmental delay than non-plagiocephalic children,5 12 17–22 but whether these delays persist is uncertain. Some authors12 13 have shown an increased need in later childhood for further educational help, but this is a controversial area in which there is sparse data and poor follow-up rates. No study showing delayed development in deformational plagiocephaly has determined cause and effect.

The main aims of this study were to compare head shape measurements at age 3–5 years with
those obtained in infancy and to investigate factors common
to those children whose head shapes had not improved. In
addition, we aimed to determine the level of parental concern
about the children’s head shapes and to assess the extent of
developmental delays.

METHODS
Infants with positional head shape deformities from through-
out the Auckland region, New Zealand, were referred by general
practitioners, community child health nurses, physiotherapists
and paediatricians to an outpatient clinic at Starship Children’s
Hospital for assessment and advice. This was the only dedicated
plagiocephaly clinic in the region. Parents answered a question-
naire covering demographic information, obstetric history and
a history of the plagiocephaly and current positioning strate-
gies. The infant was examined, neck function assessed and an
objective measurement of head shape was made. Neck muscle
dysfunction was defined as an observed head tilt or a limita-
tion in active or passive range of lateral movement, or if there
was a parental report of a past definite difficulty in turning the
head in one direction that had resolved by the time of the clinic
visit. All parents were counselled fully about how to perform
counterpositioning strategies and the infant was referred for
physiotherapy if indicated for neck muscle dysfunction. All
assessments were performed by the same researcher (BLH).
Parents completed an Ages and Stages Questionnaire (ASQ),
assessing age-appropriate development in the communication,
gross motor, fine motor, personal/social and problem solving
domains. ASQ second edition questionnaires were used at both
assessments, but cut-offs from the ASQ third edition were used
as the questions are almost identical but the cut-offs are now
based on a much larger validation sample of >12 000. Minor
differences in wording between the two versions of the ques-
 tionnaires were deemed not to influence the results.

The technique used to objectively measure the head shape,
HeadsUp, is fully described elsewhere and is further dis-
cussed at http://www.fmhs.auckland.ac.nz/son/paed/pla-
giocephaly/default.aspx. In brief, a soft stretchy headband is
placed around the head circumference, thus outlining the head
shape in that plane. A digital photograph of the band is taken
from above and a custom-written computer program takes
measurements from the resulting image of the band shape.
The main measurements used are the cephalic index (CI) and
the oblique cranial length ratio (OCLR). CI is the ratio of the
width of the head to the length of the head. A CI≥93 is consid-
ered outside the normal range and indicates brachycephaly or
short wide head shape with central occipital flattening. OCLR
is the ratio of the longer to the shorter oblique cranial diame-
ters, and indicates plagiocephaly or asymmetrical head shape.
An OCLR≥106 is considered abnormal.

All children diagnosed in the clinic with deformatonal pla-
giocephaly or brachycephaly were included in this study if they
were at least 3 years 3 months old during the follow-up period
(July 2009 to March 2010). Children older than 12 months at
initial assessment, those living outside the region, those with
significant medical problems or neurodevelopmental condi-
tions such as Down’s syndrome, families who did not speak
English and children who were in state care were excluded.

A letter inviting participation in the study was sent to the
families, followed up by a phone call to further explain the
study and to make an appointment to reassess the child at
home. At the home visit, the parents signed a consent form
and answered a short questionnaire. HeadsUp measurement
photographs were taken of the child’s head, and an age-appro-
priate ASQ was completed by the parent with the child.

Head shape measurements at follow-up were compared
with those obtained at the initial assessment. The severity
of the head flattening was categorised using cut-offs estab-
lished earlier. Previous and current ASQ scores were com-
pared. Infants were classified as having poor improvement at
follow-up if they were worse than at the initial assessment, if
they were still in the severe category or if they had not reduced
the equivalent of one severity level, as per an algorithm estab-
lished earlier.

The parents’ occupations were rated using the New Zealand
Socioeconomic Index and were categorised into high, medium
and low socioeconomic status. The score of the higher-rated
parent was used. Statistical analysis was performed using SAS
χ² Analysis was used for categorical variables and paired t tests
and Wilcoxon signed rank tests were performed on continuous
variables.

The study was approved by the Northern X Regional Ethics
Committee and the Auckland District Health Board Research
Office.

RESULTS
Characteristics of study population
There were 161 eligible children of the 220 children with defor-
tational plagiocephaly seen in the clinic from May 2005 to
August 2007. Those children who were not eligible were clas-
sified as follows: not yet attained the age of 3 years 3 months,
28; aged >12 months at initial assessment, 11; living out of
the region at time of initial assessment, 9; other, 11. Of the 161
eligible children, 129 (80%) were followed up. Five families
decided to participate and 27 had moved away or could not be
found. No child had moulding helmet therapy. Two children
refused to have their head measured at the follow-up assess-
ment; other data for these two children are included in the
results, but head measurement data is missing (table 1).

Head shape measurements
Initially, 47% were in the severe range, 31% were in the mod-
erate range and 22% were in the mild range. By follow-up,
77 (61%) of the measured children had achieved the normal
range for head shape, and only 5 (4%) were in the severe range
figure 1).

Reductions in severity occurred over all severity levels and
there were many children who had been severe initially whose
follow-up measurements fell into the normal range (figure 2).
At follow-up only two children (2%) had frontal asymmetry
and four (3%) had facial asymmetry, compared to 57 (44%)
and 58 (29%), respectively, with frontal and facial asymme-
try at initial assessment. Although 62% had a history of neck
muscle dysfunction at initial assessment, no child had prob-
lems with neck function at follow-up.

Table 2 lists types of head shapes and the mean CI and
OCLR of all infants. The mean CI in children who were ini-
tially brachycephalic fell from 98.5 (SD 4.2) to 90.4 (SD 3.4);
in initially plagiocephalic children the mean OCLR fell from
110.0 (SD 2.4) to 106.1 (SD 2.3). Similar levels of reduction
were seen in the combination group.

Poor improvement
There were 17 (13%) children who were classified with poor
improvement, 12 who were initially plagiocephalic and 5 with
Table 1 Characteristics of study children

<table>
<thead>
<tr>
<th>Variable</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at assessment</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>5.8 (SD 2.3) months</td>
</tr>
<tr>
<td>Range</td>
<td>2.0–12.0 months</td>
</tr>
<tr>
<td>Follow-up</td>
<td>47.4 (SD 4.5) months</td>
</tr>
<tr>
<td>Range</td>
<td>3 years 3 months to 4 years 9 months</td>
</tr>
<tr>
<td>Mean age difference between assessments</td>
<td>3.5 (SD 0.4) years</td>
</tr>
<tr>
<td>Range</td>
<td>2.6–4.4 years</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>91 (70.5)</td>
</tr>
<tr>
<td>Female</td>
<td>38 (29.5)</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
</tr>
<tr>
<td>Firstborn</td>
<td>90 (69.8)</td>
</tr>
<tr>
<td>Later-born</td>
<td>39 (30.2)</td>
</tr>
<tr>
<td>Gestation</td>
<td></td>
</tr>
<tr>
<td><37 weeks</td>
<td>22 (17.1)</td>
</tr>
<tr>
<td>Term</td>
<td>107 (82.9)</td>
</tr>
<tr>
<td>Multiple birth (missing=5)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (6.4)</td>
</tr>
<tr>
<td>No</td>
<td>116 (93.6)</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
</tr>
<tr>
<td>Never or <1 month</td>
<td>34 (26.3)</td>
</tr>
<tr>
<td>≥1 month</td>
<td>95 (73.7)</td>
</tr>
<tr>
<td>Infant's ethnicity</td>
<td></td>
</tr>
<tr>
<td>New Zealand European</td>
<td>82 (63.6)</td>
</tr>
<tr>
<td>New Zealand Maori</td>
<td>14 (10.8)</td>
</tr>
<tr>
<td>Pacific</td>
<td>15 (11.6)</td>
</tr>
<tr>
<td>Asian</td>
<td>17 (13.2)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td></td>
</tr>
<tr>
<td>Low (0–40)</td>
<td>9 (7.0)</td>
</tr>
<tr>
<td>Medium (41–60)</td>
<td>58 (45.0)</td>
</tr>
<tr>
<td>High (>60)</td>
<td>62 (48.0)</td>
</tr>
<tr>
<td>Maternal qualifications</td>
<td></td>
</tr>
<tr>
<td>Low (none or school certificate)</td>
<td>23 (17.8)</td>
</tr>
<tr>
<td>Medium (sixth form or Bursary)</td>
<td>23 (17.8)</td>
</tr>
<tr>
<td>High (professional or tertiary qualification)</td>
<td>83 (64.3)</td>
</tr>
<tr>
<td>Age plagiocephaly first noticed (weeks)</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6.9 (4.7)</td>
</tr>
<tr>
<td>Range</td>
<td>0–22.0</td>
</tr>
<tr>
<td>Age first seen in clinic</td>
<td></td>
</tr>
<tr>
<td><6 months</td>
<td>77 (59.7)</td>
</tr>
<tr>
<td>≥6 months</td>
<td>52 (40.3)</td>
</tr>
<tr>
<td>Neck dysfunction at initial assessment (missing=1)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>80 (62.5)</td>
</tr>
<tr>
<td>No</td>
<td>48 (37.5)</td>
</tr>
</tbody>
</table>

Parental concern

Most parents (85%) were ‘very’ or ‘somewhat’ concerned about the head shape at the initial assessment, with 15% being ‘not very’ concerned. At follow-up, 13% were ‘very’ or ‘somewhat’ concerned, 28% were ‘not very’ concerned and 59% were ‘not at all’ concerned.

ASQ delays

Seven infants did not have an ASQ assessment at the initial clinic visit as they were <15 weeks of age. Of those who had both assessments, at the initial assessment 41% had one or more delays on the ASQ and 22% had two or more delays. At follow-up only 11% of these had one or more delays and 4% had two or more delays. Using ASQ-3 validation data, one would expect around 15% to show one or more delays at each age, and around 5–8% to have two or more delays. The difference between observed and expected was significant at the initial assessment (p<0.0001) but not at the follow-up assessment (p=0.26). The mean drop in the number of delays between the two assessments was 0.6 (p<0.0001). Delays at initial assessment were predominantly in the gross motor domain, with 29% of all delayed children having problems in this area. There was a moderate level of delays in the fine motor (17%), problem solving (15%) and personal/social (17%) domains, but few in the communication domain (4%). At follow-up, there were fewer than 5% in each domain with delays (expected: 6–7%).

Initially, there was no difference in delays between the good and poor improvement groups. However, at the follow-up assessment, five (29%) of the poor improvement group exhibited delays, compared with nine (8%) of the good improvement group (p=0.02, Fisher’s). These delays were primarily in the communication domain, with 18% of the poor improvement group showing delays in this domain compared with 3% in the well-improved group (p=0.02). However, there were small numbers in each group and this difference should be interpreted with caution. Variables found not to be significantly related to poor improvement included: gender, ethnicity, socioeconomic status, age at first assessment, prematurity, side of flattening, neck dysfunction initially and being firstborn.

DISCUSSION

In accordance with our previous work on younger children,2 3 in this study we have shown good improvement over time in 87% of preschoolers who had exhibited deformingal brachycephaly and plagiocephaly as infants. Importantly, 61% improved enough to fall into the normal range 3.5 years later, with only 4% still in the severe range by then. In an earlier study with 1 year of follow-up, these figures were 42% and 8% respectively,5 indicating that improvement continues to occur as the child ages. The small group who improved less well tended to be those who were initially more severely plagiocephalic. This is to be expected as those with an OCLR of 110 or greater at follow-up were all categorised as poor improvement and many of these had started with a very high OCLR measurement that had not yet dropped below 110. Other studies of longer-term outcomes are few and are limited by subjective evaluations of head shape2 or by poor response rates.19 A few shorter-term studies of positional head deformities have also shown improvement in head shape in infants treated conservatively.3 27 28

Brachycephaly improved more than plagiocephaly over time. Teichgraeber et al29 showed significant improvements in brachycephaly in a subgroup of brachycephalic infants followed for 4.5 months on average, but they concluded that brachycephalic children rarely revert to normal using either positional strategies or moulding helmets. However, the authors used norms that were set in the 1980s by Farkas,30 at a time when supine sleeping was not common. Cephalic configurations in combination head shapes. Seven of the 17 were in the mild category by follow-up. No brachycephaly-only child was in the poor improvement group at follow-up. Those in the poor improvement group had a higher mean OCLR of 110.2 (SD 2.4) at initial assessment compared to those in the well-improved group with a mean initial OCLR of 109.2 (SD 1.8) (p=0.02).
infants are strongly influenced by sleep position, and CI is higher in supine sleeping populations. It is possible that our brachycephaly cut-offs for 3- and 4-year-old children should be lower than the level of 93 previously set for infants. There is a need for a large population-based study to establish CI norms for western supine-sleeping populations from infancy through childhood.

Parental concerns about the head shape reduced markedly over time. This tendency has also been noted by others. Indeed, many mothers commented that they had all but forgotten about the head shape issue until they received our letter about the study. It seems that full hair growth by this age hides any residual asymmetry unless the hair is wet or very short.

As in other studies, a high percentage of the children in this study exhibited developmental delays as infants, but these were predominantly gross motor in nature. Although no previous study has shown cause and effect, it is possible that early gross motor delays may be on the causal pathway that leads to positional head deformation, that is, developmental delays lead to lack of movement and therefore more likelihood of positional head flattening. Delays may be related to the effects of the supine sleep position, especially where prone play experience is inadequate, thus limiting the development of strength and upper body coordination. Neck muscle dysfunction, lower activity levels and the tendency for the condition to be more prevalent in males may also impact on developmental scores. Nevertheless, this study has shown that development catches up over time. In contrast, others have suggested that delays continue into later childhood; however, these studies were hampered by small numbers in the follow-up...
groups. Further research into long-term outcomes for development is needed to clarify these issues, especially in children whose head shapes do not revert to normal.

A limitation of this study is the two-dimensional nature of HeadsUp measurements in what is essentially a three-dimensional problem. It is also possible that cut-offs to indicate brachycephaly may need to be revised for older children, and we await population-based norms to indicate the appropriate level. The strengths of the study were the good rates of follow-up and the use of the same tools at both assessments to measure head shape and development. No child had orthotic helmet therapy; therefore, the results are useful in determining the natural history of positional head deformities after positioning advice and physiotherapy have been provided.

Another limitation was that there was no local control group and out of necessity we used cut-offs established from the ASQ normative population based on >12 000 children. It is possible that cut-offs for New Zealand children may be different but we have no reason to believe this to be so. It is difficult to say how representative of the general population this group of children was, but it is to be noted that they attended the only dedicated plagiocephaly clinic in the region at the time and had been referred by a wide range of practitioners. We note the relatively large number of families in the study from high socioeconomic status and with higher maternal qualifications, but have insufficient data to determine why this was so.

Supine sleeping has been largely responsible for an impressive reduction in SIDS32, 39 and it is vitally important to maintain the supine sleeping message. If deformational plagiocephaly or brachycephaly does occur, one should provide the parents with positioning strategies and reassure them that in all likelihood improvement will happen with time. In New Zealand, the recommendation to avoid the prone sleeping position has been in place since 1991, 38 although the decline in prevalence of prone sleeping position started in 1989.59 Thereafter, an increase in deformational plagiocephaly was soon noticed, 6 with some describing the increase as being of ‘epidemic’ proportions.40 41 We have not noticed an epidemic of older children and teenagers with unusual head shapes in our clinical practice and in our communities. We suspect that improvement continues into older childhood, and we look forward to further studies describing much longer-term outcomes of this commonly occurring infant condition.

CONCLUSIONS
Most, but not all, positional head shape deformities improved with time, some dramatically. Brachycephaly showed better improvement than plagiocephaly, and facial and frontal asymmetry all but disappeared. Parental concern about the head shape also reduced markedly. Although there was a high level of developmental delays in infancy, this had reduced to an expected level by preschool age.

Acknowledgements BLH was supported by the Child Health Research Foundation and the Auckland Medical Research Foundation. EAM is supported by the Child Health Research Foundation. The authors sincerely thank the parents and children for participating in this study.

Funding This study was funded by the Child Health Research Foundation and the Auckland Medical Research Foundation.

Competing interests None.

Patient consent Obtained.

Ethics approval This study was conducted with the approval of the Northern X Regional Ethics Committee, Auckland District Health Board Research Office.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

Deformational plagiocephaly: a follow-up of head shape, parental concern and neurodevelopment at ages 3 and 4 years

B L Hutchison, A W Stewart and E A Mitchell

Arch Dis Child 2011 96: 85-90 originally published online September 29, 2010
doi: 10.1136/adc.2010.190934

Updated information and services can be found at:
http://adc.bmj.com/content/96/1/85

These include:

References
This article cites 36 articles, 9 of which you can access for free at:
http://adc.bmj.com/content/96/1/85#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Epidemiologic studies (1818)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/