Towards evidence based medicine for paediatricians

Edited by Bob Phillips

In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family. Archimedes seeks to assist practising clinicians by providing “evidence based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaw-Jones and the group at the Emergency Medicine Journal—“BestBets”.

A word of warning. The topic summaries are not systematic reviews, through they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence based answers to practical, clinical questions.

The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching, and gaining answers.) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question.

A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat, NNT) books by Sackett and Moyer may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.

The electronic edition of this journal contains extra information to each of the published Archimedes topics. The papers summarised in tables are linked, by an interactive table, to more detailed appraisals of the studies. Updates to previously published topics will be linked to the original article when they are available.

Electronic-only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include:

- Do we need to give steroids in children with Bell’s palsy?
- Is plain radiography indicated as 1st choice imaging modality in children with non-traumatic back pain?

Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn’t been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal.

- Is nasogastric fluid therapy a safe alternative to the intravenous route in infants with bronchiolitis?
- Are methylxanthines effective in preventing or reducing apnoeic spells in infants with bronchiolitis?
- Are newer macrolides effective in eradicating carriage of pertussis?

References

Is nasogastric fluid therapy a safe alternative to the intravenous route in infants with bronchiolitis?

Report by
N Kennedy, N Flanagan, Royal Belfast Hospital for Sick Children, Falls Road, Belfast BT12 6BE, UK; neilsaraben@aol.com
doi: 10.1136/adc.2004.068916

Table 1 Nasogastric versus intravenous therapy in the treatment of bronchiolitis

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammartino et al (2002)</td>
<td>73 Australian infants admitted with bronchiolitis, 55 needing fluids. 37 given fluids by NGT. 18 infants needing fluids were excluded as <4 months or reduced level of consciousness or apnoea or GO reflux needing treatment</td>
<td>Uncontrolled cohort (level 4)</td>
<td>Respiratory and heart rate, SaO2 Number going on to IV fluids</td>
<td>NGT “tolerated without incident” 2/37 deteriorated as illness progressed Removal of NGT did not help</td>
<td>Uncontrolled case series Excluded children <4 months</td>
</tr>
<tr>
<td>Vogel et al (2003)</td>
<td>409 infants in 5 New Zealand hospitals</td>
<td>Uncontrolled cohort (level 4)</td>
<td>Percentage receiving i.v. or NGT fluids in each hospital</td>
<td>15-30% received IV fluids 1-39% received NGT fluids</td>
<td>Uncontrolled series. No comparison of outcome of NGT vs. i.v. Large variations in practice</td>
</tr>
<tr>
<td>Stocks (1980)</td>
<td>7 preterm infants (1.6-2.2 kg) measured with and without an NGT in-situ</td>
<td>Controlled physiological study (level 5)</td>
<td>Nasal resistance [Raw] (measured in 7) and total airway resistance [Raw] (measured in 4)</td>
<td>Increased Rn of 50-150% with NGT in situ. 30-50% increase in Raw with NGT</td>
<td>Study only of “well” preterm infants. No comment on clinical effects. Small study. Considerable measurement difficulties</td>
</tr>
<tr>
<td>Martin et al (1988)</td>
<td>8 preterm infants (1220-1740 g)</td>
<td>Controlled physiological study (level 5)</td>
<td>Change in oral/nasal airflow (measured as % total tidal volume [TV]) with and without NGT</td>
<td>Nasal TV decreased from 54% to 39% with NGT in place Total TV remained constant despite NGT</td>
<td>Small study of “well” neonates without significant lung disease</td>
</tr>
<tr>
<td>Greenspon et al (1990)</td>
<td>14 neonates <2 kg, 10 neonates >2 kg with either NG or orogastric tube (OGT)</td>
<td>Controlled physiological study (level 5)</td>
<td>Minute volume, pulmonary resistance Reduced minute volume, increased pulmonary resistance in <2 kg group with NGT. No effect vs. OGT in babies >2 kg</td>
<td>Study only of “well” neonates, up to 3 kg without lung disease</td>
<td></td>
</tr>
</tbody>
</table>
There is some evidence\(^1\) that a NGT increases airway resistance in small preterm neonates, but not in older heavier ones.\(^2\) Total tidal volume in well neonates is not affected by an NGT.\(^3\) However, it is difficult to extrapolate from these studies to the clinical significance of an NGT in older, larger children with bronchiolitis. Expert opinion varies. Nicolai and Pohl\(^4\) and Sporik\(^5\) argue “from first principles” that the nasogastric (NG) route be avoided because of the theoretical risk of increased airway resistance. However based on the same studies cited by Sporik, Milner came to the conclusion that the NG route is acceptable in infants over 2 kg.

The case series reported by Sammartino\(^6\) and Vogel et al\(^7\) show that there is widespread use of the NG route in many units.\(^6\) However, no conclusions can be drawn from their data regarding the safety of NG fluids versus the intravenous route.

No studies were identified assessing the likelihood of electrolyte disturbance in children with bronchiolitis given intravenous rather than nasogastric fluids.

In infants with bronchiolitis, there is no good quality evidence that rehydration by the NG route is more or less safe than via the intravenous route. A randomised controlled trial is needed.

CLINICAL BOTTOM LINE
- There is no good quality evidence for or against the use of nasogastric fluids in infants with bronchiolitis. (Grade D)
- Physiological studies would suggest that use of a nasogastric tube be limited to infants >2 kg. (Grade D)
- Until good quality evidence is available, local guidelines should be followed. (Grade D)

REFERENCES
4. Nicolai T, Pohl A. Acute viral bronchiolitis in infancy: epidemiology and management. Lung 1990;suppl 396–405

Search strategy and outcome
Cochrane database of systematic reviews: No directly relevant study found, but there was one systematic review on the efficacy of methylxanthines in reducing apnoea of prematurity\(^1\) and another systematic review on the prophylactic use of caffeine to prevent postoperative apnoea following general anaesthesia in ex-preterm infants.\(^7\)

Medline plus (no limits): Search terms: Infants and bronchiolitis/bronchial infections/virus infections

Table 2 Theophylline derivatives for bronchiolitis induced apnoea

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type (level of evidence)</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobias (2000)</td>
<td>7 infants with RSV associated apnoea</td>
<td>Retrospective review (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>No infant had episodes of apnoea or bradycardia from 2 to 18 hours after the initial loading dose</td>
<td>Initial dose of caffeine base was 10 mg/kg and if further doses are needed, given as 5 mg/kg as second dose and 2.5 mg/kg as third dose</td>
</tr>
<tr>
<td>Johnston and Kuzemko (1992)</td>
<td>2 infants</td>
<td>Case report (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>Respiration became regular with disappearance of apnoea immediately after administration of aminophylline</td>
<td>5 mg/kg of iv aminophylline followed by 5–7 days of oral theophylline</td>
</tr>
<tr>
<td>DeBuse and Cartwright (1979)</td>
<td>1 infant with RSV positive bronchiolitis</td>
<td>Case report (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>No apnoeic episodes occurred 9 hours after administration of theophylline</td>
<td>Oral theophylline. Loading dose of 10 mg/kg in aliquots, then 4 mg/kg 6 hrly ≤24 hours followed by 1 mg/kg</td>
</tr>
</tbody>
</table>

Are methylxanthines effective in preventing or reducing apnoeic spells in infants with bronchiolitis?

Report by P Ramesh, M Samuels, University Hospital of North Staffordshire, Stoke on Trent, UK; martin.samuels@uhns.nhs.uk

doi: 10.1136/adc.2004.068825

A 2 week old infant, born at 36 weeks gestation was admitted to the paediatric ward in November with a 24 hour history of runny nose, cough, and episodes of shallow breathing and apnoeic spells. This was thought to be due to bronchiolitis, and the consultant paediatrician suggested starting the baby on caffeine (theophylline derivative with less side effects). As the resident middle grade doctor, I knew that caffeine has been used widely in neonatal units for apnoea of prematurity, but I wondered if there was any evidence for its use in this clinical situation.

Structured clinical question
In infants with bronchiolitis [patient] does caffeine [intervention] reduce or prevent apnoeas [outcome]?
and apnoea/apnea and caffeine/xanthine/methylxanthine/phosphodiesterase inhibitors/theophylline

Table 3 Theophylline derivatives and apnoea due to other causes

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type (level of evidence)</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henderson-Smart and Steer (2001)</td>
<td>192 preterm infants in 5 trials</td>
<td>Systematic review (level 1a)</td>
<td>Reduction in apnoea and use of IPPV</td>
<td>RRR for apnoea 0.45 (95% CI 0.31–0.60). RRR for IPPV 0.34 (95% CI 0.12–0.97).</td>
<td>3 studies used caffeine and 2 studies theophylline</td>
</tr>
<tr>
<td>Henderson-Smart and Steer (2001)</td>
<td>78 ex-preterm infants undergoing general anaesthesia for surgery. Gestational age 30–32 weeks. Post conceptual age 40–44 weeks</td>
<td>Systematic review (level 1a)</td>
<td>Reduction in the incidence of apnoea and bradycardia in the postoperative period</td>
<td>RRR 91% (95%CI 66 to 98). ARR 58%. No infant in either control or treatment group required intubation</td>
<td>Intravenous caffeine in a single dose during general anaesthesia. Dosage 5–10 mg/kg</td>
</tr>
<tr>
<td>Lim et al (2003)</td>
<td>42 term infants requiring PGE1 infusion for duct dependent congenital heart disease</td>
<td>RCT (level 1b)</td>
<td>Reduction in intubation for apnoea</td>
<td>6/21 required intubation in the placebo compared to 0/21 in the aminophylline group (p = 0.02)</td>
<td>6 mg/kg iv aminophylline followed by 2 mg/kg iv 8 hourly for 72 hours</td>
</tr>
</tbody>
</table>

There was one retrospective review1 and two case reports2 5 (in the form of letters to the editor) directly addressing the problem (table 2). There was also one randomised controlled trial on the usefulness of aminophylline in reducing apnoeas and intubation in term infants during prostaglandin E1 infusion.6

Searches were performed in August 2004.

Commentary

Recurrent apnoea is a common problem in otherwise well preterm infants. By term equivalent age, infants have usually ‘outgrown’ their tendency to spontaneous apnoea. However, with an additional stress, such as infection (for example, bronchiolitis) or administration of drugs that depress the central nervous system (for example, general anaesthesia, prostaglandin), then apnoea and oxygen desaturations can recur.

Caffeine is recognised to reduce apnoea and the need for mechanical ventilation in preterm infants with apnoea of prematurity.1 In addition caffeine prevents apnoea, bradycardia, and episodes of desaturation in growing preterm infants following general anaesthesia,2 while aminophylline, which is another widely used theophylline derivative, was found to be effective for the prevention of apnoea and intubation during prostaglandin E1 infusion in term infants6 (table 3). While these data are supportive, there may be significant differences in the mechanism of apnoa in general anaesthesia and viral induced apnoea.

We could only find three reports3–5 involving a total of 10 infants, all of whom were born preterm and presented with bronchiolitis associated apnoeas approximately around term equivalent age. These reports have concluded that theophylline derivatives are effective in reducing the incidence of apnoea and avoided the need for mechanical ventilation in this clinical situation (table 1).

Caffeine has a more favourable therapeutic index than aminophylline. No major adverse effects were reported from the studies included in the systematic reviews.1 2 Jitteriness, tachycardia, and raised blood glucose are the common side effects, but routine drug level monitoring is not necessary at standard dosage.7

While these three reports claim that the use of caffeine helped avoid intubation in infants with viral infection induced apnoea, there are no data from randomised controlled trials confirming these benefits. As intubation for apnoea in bronchiolitis is uncommon, a large multicentre trial would be needed.

CLINICAL BOTTOM LINE

- In addition to its proven efficacy in apnoea of prematurity, caffeine has also been shown to reduce the incidence of apnoea in ex-preterm infants following general anaesthesia and in term infants following prostaglandin infusion.

- There is only limited evidence from case reports for the use of caffeine in infants presenting with bronchiolitis associated apnoeas.

REFERENCES

Are newer macrolides effective in eradicating carriage of pertussis?

Report by R Srinivasan, T H Yeo, Llandough Hospital, Cardiff, UK: ramsriniv@doctors.org.uk

doi: 10.1136/adc.2004.068783

Y ou are assessing a toddler who has presented with paroxysmal cough with a whoop and post-tussive vomiting. A clinical diagnosis of “whooping cough” is made and this is duly confirmed on pernasal swab cultures that reveal the growth of Bordetella pertussis.

From history, you note that he is allergic to penicillin and has been given erythromycin for a previous episode of
Table 4: Use of newer macrolides in pertussis

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Level of evidence</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langley et al (2004)</td>
<td>477 children (6 mth–16 y) with clinical symptoms of pertussis were randomised to receive either azithromycin (10 mg/kg on day 1 followed by 5 mg/kg once a day for 4 more days) or erythromycin estolate (40 mg/kg/day in 3 divided doses for 10 days)</td>
<td>Multicentre randomised controlled trial (level 1b)</td>
<td>Bacteriologic eradication: Negative cultures at the end of treatment Relapse: Positive cultures a week after end of treatment Adverse GI events: (parent completed diary)</td>
<td>Azithromycin group: 53/53 vs erythromycin group: 53/53 (eradication 100% 95% CI 93.3–100) Azithromycin group: 0/51 (0%; 95% CI: 0–7.0) vs erythromycin group: 0/53 (0%; 95% CI: 0–6.7) Azithromycin in erythromycin groups: Overall incidence of GI side effects was 18.8% vs 41.2%, NNT = 4.46 Nausea (2.9% vs 8.6%; 95% CI: –8.9% to –2.0%; NNT = 18.1), vomiting (5.0% vs 13.0%; 95% CI: –4.9% to –1.4%; NNT = 12.5) Diarrhoea (7.1% vs 11.8%; 95% CI: –9.0% to –0.3%; NNT = 21.2) No serious adverse events were recorded in either group 90% in the azithromycin group vs 55% in the erythromycin group</td>
<td>Group assignment not blinded after randomisation Positive Nasopharyngeal (NP) cultures for pertussis were found in 58/239 (azithromycin group) and in 56/238 (erythromycin group) Post treatment cultures not available on all subjects</td>
</tr>
<tr>
<td>Lebel and Mehra (2001)</td>
<td>153 children (<16 y) with clinical symptoms of pertussis received either clarithromycin 7.5 mg/kg/dose twice a day for 7 days (n = 76) or erythromycin (13.3 mg/kg/dose three times a day for 14 days (n = 77)</td>
<td>Prospective randomised single blind trial (level 1b)</td>
<td>Bacteriologic eradication: Negative post treatment cultures Adverse GI events: (inspection of medication containers)</td>
<td>Negative post treatment cultures recorded in 31/31 on clarithromycin (100%; 95% CI: 88.8–100%) vs 22/23 with erythromycin (96%; 95% CI: 78.1–99.9%) Seen in 45% of those on Clarithromycin Vs 62% of those on Erythromycin. (p < 0.035; NNT = 5.8)</td>
<td>35/76 in the clarithromycin group and 27/77 in the erythromycin group had positive cultures of 8 pertussis 90% of subjects were appropriately immunised against pertussis Post treatment cultures not available on all subjects</td>
</tr>
<tr>
<td>Pichichero et al (2003)</td>
<td>34 subjects (29 culture positive and 5 per positive) were all given azithromycin (10 mg/kg on day 1 followed by 5 mg/kg once a day for 4 more days)</td>
<td>Prospective, open labelled, non comparative trial (level 2b)</td>
<td>Bacteriologic eradication: Negative cultures/ PCR at days 2–3 of treatment and days 14–21 post treatment Adverse events: (inspection of medication containers)</td>
<td>1/34 (3%) had positive cultures at 2–3 days after treatment Bacteriologic eradication 97% at 2–3 days and 100% by 14–21 days after starting treatment No serious adverse events recorded 10% patients had GI side effects (nausea, loose stools, and abdominal discomfort)</td>
<td>Study group heterogeneous. No subset analysis available 5 of the 34 subjects were adults (parents of children), 12 were between 10–20 y of age and 17 were from the age of 6 mth to 10 y</td>
</tr>
<tr>
<td>Bace et al (1999)</td>
<td>37 subjects with culture proven pertussis. Mean age of patients 7.5 mth (range 2–18 mth). 60% of them were not immunised against pertussis. All received azithromycin. Dose: 10 mg/kg on day 1 followed by 5 mg/kg once a day for a day 4 more days (n = 17) v 10 mg/kg once daily for 3 days only (n = 20)</td>
<td>Prospective, open labelled, non-comparative trial (level 2b)</td>
<td>Bacteriologic eradication: Negative cultures on day 7, 14 after commencement of treatment Relapse: Positive cultures on day 21 after start of treatment Adverse events: (inspection of medication containers)</td>
<td>Positive cultures on day 7, 2/19 in the 3 day group (10.5%) v 0/16 in the 5 day group. 100% bacterial eradication was seen on day 14 (0/16 v 0/16) in both groups 1/14 patients on the 3 day course (7.1%). None on the 5 day course Transient increase in liver enzyme ALT noted in up to 20.6% of all subjects</td>
<td>Allocation criteria to either regime unclear Relationship of transaminits to dose used unclear</td>
</tr>
<tr>
<td>Aoyama et al (1996)</td>
<td>17 patients (0–13 y) with culture proven pertussis 8/17 received azithromycin (10 mg/kg once a day for 5 weeks) while 9/17 received clarithromycin (10 mg/kg/day in two divided doses for 7 days). Each study subject was matched with two historical controls treated with erythromycin (40–50 mg/kg/day in three divided doses for 14 days) 58.8% of subjects were not immunised against pertussis</td>
<td>Two separate open labelled trials using historical controls (level 4)</td>
<td>Bacterial eradication: negative culture on 1 week after treatment Relapse: positive culture at 2 weeks after treatment</td>
<td>8/8 with azithromycin (100%, 95% CI: 68.8–100%) v 13/16 (81%, 95% CI: 54.4–96%) among controls given erythromycin 9/9 with clarithromycin (100%, 95% CI: 71.1–100%) v 16/18 (88.8%, 95% CI: 65.3–98.6%) among controls given erythromycin None in either study or control groups</td>
<td>Historical controls Allocation criteria to medications unclear Small study group</td>
</tr>
</tbody>
</table>
tonsillo-pharyngitis. His mother recalls that he suffered severe abdominal pain when taking it and did not complete the course. You wonder whether newer macrolides such as azithromycin or clarithromycin could be effective alternatives to erythromycin for the treatment of pertussis.

Structured clinical question
In a child diagnosed with whooping cough [patient] are azithromycin or clarithromycin [intervention] compared with erythromycin [comparison] as effective in eradicating infection with fewer side effects [outcome]?

Search strategy
Primary source: Medline via Pubmed using keywords Pertussis OR Whooping Cough and combining the search with Azithromycin, Clarithromycin separately. This was verified by an alternative search method using MeSH heading “Whooping Cough” and subheading “drug therapy” [MeSH]. Five relevant articles were found.

Secondary sources: Cochrane database and Best Bets. No further papers were identified.

See table 4.

Commentary
Antimicrobials are usually administered when pertussis is suspected or confirmed. If the disease is already established (paroxysmal phase), antibiotics have little or no effect on the clinical course of the illness except to render the patient non-infectious to others. This is important, so as to limit the spread of infection especially to the unimmunised and young infants. A 10–14 day course of erythromycin is the long established treatment for whooping cough. It is known to reduce transmission and hasten clearance of *B pertussis*. However, gastrointestinal side effects seem quite limiting in a large proportion of patients treated with it. This may have a bearing in ensuring compliance. Newer macrolides—clarithromycin and azithromycin—are superior to erythromycin in terms of absorption, acid stability, and tissue penetration. They have longer half-lives, enabling less frequent dosing and shorter treatment courses. They are also known to have fewer side effects.

From the available evidence it can be seen that the newer macrolides are at least as effective as erythromycin in eradicating *B pertussis* infection. A significant reduction in adverse gastrointestinal side effects and a better compliance have been shown. No serious side effects have been observed with these agents so far. Transient elevation in alanine aminotransferase (ALT) has been shown in one study. Regarding prophylaxis, the current UK guideline is to administer a seven day course of erythromycin, if a clinically suspected or confirmed case of pertussis is identified. The aim is to protect those at risk from pertussis: infants, especially neonates; all household contacts who are unimmunised; and contacts who are 5 years or older if they did not receive a preschool pertussis booster. There is no evidence of any benefit from chemoprophylaxis given more than 21 days from the date of onset of the primary case. Unimmunised or partially immunised cases and contacts should complete their course of vaccine. Clarithromycin and azithromycin are potential, but not proven alternatives to erythromycin for prophylaxis at present.

REFERENCES

Is nasogastric fluid therapy a safe alternative to the intravenous route in infants with bronchiolitis?

N Kennedy and N Flanagan

Arch Dis Child 2005 90: 320-321
doi: 10.1136/adc.2004.068916

Updated information and services can be found at:
http://adc.bmj.com/content/90/3/320

These include:

References
This article cites 6 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/90/3/320#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Bronchiolitis (126)
Bronchitis (136)
TB and other respiratory infections (643)
Clinical trials (epidemiology) (482)
ADC Archimedes (269)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/