The CBCL as a screen for psychiatric comorbidity in paediatric patients with ADHD

J Biederman, M C Monuteaux, E Kendrick, K L Klein, S V Faraone


Aims: To examine the informativeness of the Child Behavior Checklist (CBCL) as a screening tool to identify comorbid and non-comorbid cases of attention deficit hyperactivity disorder (ADHD) in a paediatrictically referred population. It was hypothesised that specific scales of the CBCL would help identify specific comorbidities within ADHD cases in the primary care setting.

Methods: The sample consisted of children and adolescents 6–17 years old of both genders with ADHD (n = 121). A receiver operating curve (ROC) approach was used to determine which CBCL scales best differentiated between ADHD cases with and without its comorbidities with conduct, anxiety, and mood disorders.

Results: ROC analysis showed that the CBCL Delinquent Behavior and Aggressive Behavior scales predicted the structured interview derived diagnoses of conduct and bipolar disorder, the Anxious/Depressed and Aggressive Behavior scales predicted major depression, and the Anxious/Depressed and Attention problems scales predicted anxiety disorders.

Conclusions: These results extend to a paediatrically referred population with previously reported findings in psychiatric samples documenting good convergence between structured interview diagnoses and syndrome congruent CBCL scales. These findings support the utility of the CBCL as a screening tool for the identification of psychiatric comorbidity in ADHD youth in the primary care setting.
METHODS

Detailed study methodology has been extensively described in previous publications. Briefly, the original sample consisted of children and adolescents 6–17 years old of both genders (n = 522), with and without ADHD ascertained from primary care (n = 290) and psychiatric (n = 232) clinics. For this study, we limited the analysis to ADHD probands ascertained from primary care settings (n = 141). Written informed consent was obtained for all subjects; children provided written assent to participate. The institutional review board approved this study.

Psychiatric assessments relied on the Kiddie SADS-E (Epidemiologic Version), a DSM-III-R-based structured interview. Diagnoses were based on independent interviews with the mothers and direct interviews of children, except for those younger than 12 years of age who were not directly interviewed. The data from direct and indirect interviews were combined by considering a diagnostic criterion positive if it was endorsed in either interview. The rates of illness reported here represent lifetime prevalence. All assessments were made by interviewers who were blind to the child’s diagnosis (ADHD or control) and ascertainment site (paediatric or psychiatric). Diagnoses were considered positive if, based on the interview results, DSM-III-R criteria were unequivocally met. All diagnostic uncertainties were resolved by a committee of board certified child and adult psychiatrists who were blind to the subject’s ascertainment group, ascertainment site, all data collected from other family members, and all non-diagnostic data (for example, cognitive functioning).

As suggested by others, the diagnosis of major depression was made only if the depressive episode was associated with marked impairment. Since the anxiety disorders comprise many syndromes with a wide range of severity, we report results for two or more anxiety disorders to index the presence of a meaningful anxiety syndrome.

The mothers of each proband completed the 1991 version of the CBCL. The CBCL is an affordable pencil and paper test completed by the child’s caregiver, requiring no administration by a physician or rater. Use, scoring, and pricing information are easily accessible at: http://www.aseba.org/. In this study, no adjustments based on clinical concerns were made to the mothers’ ratings. The CBCL has nine behavioural problem subscales, and queries about the child’s behaviour in the past six months. The T-scores for each scale are calculated by a computer program. A T-score of 50 indicates average functioning in reference to other children of the same age and gender and every 10 points represents one standard deviation. In the interest of parsimony, we excluded the Somatic Complaints and Sexual Problems scales because preliminary analyses revealed their predictive properties to be far below the other scales.

Statistical analyses

First, we identified which CBCL scales were most effective as screening mechanisms for comorbid disorders common within ADHD: conduct disorder, major depression (with severe impairment), bipolar disorder, multiple (>2) anxiety disorder, and any comorbid disorder (any of the previous disorders versus none of these). We used a receiver operating characteristic (ROC) curve to assess the ability of each CBCL subscale to identify each comorbid condition. The ROC analysis uses each value across the entire range of the CBCL subscale T-scores as the cut-off for defining a case and compares this classification to the “true” diagnosis, as defined by the structured diagnostic interview. For this analysis, we collapsed the T-scores into categories (50, 51–59, 60–69, 70–79, 80) in the interest of assessing practical, hands-on cut-offs that could be readily and easily applied to clinical settings. The ROC curve then plots the sensitivity versus the false positive rate (1-specificity) across the entire range of cut-offs. This analysis generates a statistic called the area under the curve (AUC) and its associated confidence interval that can be used to compare the relative power of different screening mechanisms.

The area under the curve and 95% confidence interval from ROC analysis using CBCL scales to predict psychiatric comorbidity in a paediatrically referred ADHD sample (n = 121)

<table>
<thead>
<tr>
<th>CBCL scale</th>
<th>Conduct disorder</th>
<th>Bipolar disorder</th>
<th>Major depression*</th>
<th>Multiple anxiety disorders†</th>
<th>Any comorbid disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC</td>
<td>95% CI</td>
<td>AUC</td>
<td>95% CI</td>
<td>AUC</td>
</tr>
<tr>
<td>Withdrawn</td>
<td>0.63</td>
<td>0.48–0.78</td>
<td>0.65</td>
<td>0.42–0.88</td>
<td>0.65</td>
</tr>
<tr>
<td>Anxious/depressed</td>
<td>0.72</td>
<td>0.57–0.87</td>
<td>0.69</td>
<td>0.46–0.92</td>
<td>0.73</td>
</tr>
<tr>
<td>Social problems</td>
<td>0.51</td>
<td>0.36–0.66</td>
<td>0.52</td>
<td>0.29–0.75</td>
<td>0.52</td>
</tr>
<tr>
<td>Thought problems</td>
<td>0.61</td>
<td>0.45–0.78</td>
<td>0.54</td>
<td>0.29–0.80</td>
<td>0.67</td>
</tr>
<tr>
<td>Attention problems</td>
<td>0.58</td>
<td>0.43–0.73</td>
<td>0.59</td>
<td>0.38–0.81</td>
<td>0.63</td>
</tr>
<tr>
<td>Delinquent behaviour</td>
<td>0.81</td>
<td>0.70–0.92</td>
<td>0.72</td>
<td>0.58–0.86</td>
<td>0.59</td>
</tr>
<tr>
<td>Aggressive behaviour</td>
<td>0.80</td>
<td>0.69–0.91</td>
<td>0.74</td>
<td>0.56–0.93</td>
<td>0.76</td>
</tr>
</tbody>
</table>

95% CI, 95% confidence interval.
*Greater than or equal to two anxiety disorders.
RESULTS

A total of 121 paediatrically referred ADHD youth had CBCL data available, and are included in this analysis. The prevalence of comorbid disorders were as follows: conduct disorder (CD), 15% (n = 18); major depression (MD), 15% (n = 18); bipolar disorder (BPD), 7% (n = 8); and multiple anxiety disorder (ANX), 29% (n = 35). The prevalence of any of these comorbid disorders was 44% (n = 53). Hereafter, these comorbid cases are referred to as complex ADHD, while the non-comorbid cases (56%, n = 68) are referred to as simplex ADHD.

As shown in table 1, the complex ADHD group was significantly older than the simplex group (mean difference of 1.3 years). However, no significant differences between the two groups were found in SES, gender, or intactness of the family.

To identify which scales best differentiate specific comorbidities, we examined the area under the curve (AUC) using receiver operating characteristic (ROC) analysis as described above (see table 2). For CD, the Delinquent Behavior scale and the Aggressive Behavior scale yielded the greatest AUCs (0.81 and 0.80, respectively). In other words, there is an 80% chance that the Aggressive Behavior scale T-score of a randomly selected ADHD child with CD will be greater than the Aggressive Behavior scale T-score of a randomly selected ADHD child without CD. Similarly, BPD was also best predicted by the Delinquent Behavior scale and the Aggressive Behavior scale. The Anxious/Depressed scale and the Aggressive Behavior scale best predicted MD and any comorbid disorder. For anxiety disorders, the Anxious/Depressed scale and Thought Problems scale were found to have the highest AUCs.

In table 3, we display the performance of the identified scales to screen for each comorbid disorder. As the cut-off became greater (that is, a more stringent screening test), the PPV and specificity increased while the NPV and sensitivity decreased. For CD, the most efficient cut-off points were an Aggressive Behavior score >60 and a Delinquent Behavior score >70; these resulted in a PPV and NPV of 86% and 90%, respectively. In other words, there is an 80% chance that the Aggressive Behavior scale T-score of a randomly selected ADHD child with CD will be greater than the Aggressive Behavior scale T-score of a randomly selected ADHD child without CD. Similarly, BPD was also best predicted by the Delinquent Behavior scale and the Aggressive Behavior scale. The Anxious/Depressed scale and the Aggressive Behavior scale best predicted MD and any comorbid disorder. For anxiety disorders, the Anxious/Depressed scale and Thought Problems scale were found to have the highest AUCs.

In table 3, we display the performance of the identified scales to screen for each comorbid disorder. As the cut-off became greater (that is, a more stringent screening test), the PPV and specificity increased while the NPV and sensitivity decreased. For CD, the most efficient cut-off points were an Aggressive Behavior score >60 and a Delinquent Behavior score >70; these resulted in a PPV and NPV of 86% and 90%, respectively. In other words, there is an 80% chance that the Aggressive Behavior scale T-score of a randomly selected ADHD child with CD will be greater than the Aggressive Behavior scale T-score of a randomly selected ADHD child without CD. Similarly, BPD was also best predicted by the Delinquent Behavior scale and the Aggressive Behavior scale. The Anxious/Depressed scale and the Aggressive Behavior scale best predicted MD and any comorbid disorder. For anxiety disorders, the Anxious/Depressed scale and Thought Problems scale were found to have the highest AUCs.

In table 3, we display the performance of the identified scales to screen for each comorbid disorder. As the cut-off became greater (that is, a more stringent screening test), the PPV and specificity increased while the NPV and sensitivity decreased. For CD, the most efficient cut-off points were an Aggressive Behavior score >60 and a Delinquent Behavior score >70; these resulted in a PPV and NPV of 86% and 90%, respectively. In other words, there is an 80% chance that the Aggressive Behavior scale T-score of a randomly selected ADHD child with CD will be greater than the Aggressive Behavior scale T-score of a randomly selected ADHD child without CD. Similarly, BPD was also best predicted by the Delinquent Behavior scale and the Aggressive Behavior scale. The Anxious/Depressed scale and the Aggressive Behavior scale best predicted MD and any comorbid disorder. For anxiety disorders, the Anxious/Depressed scale and Thought Problems scale were found to have the highest AUCs.

| Table 3 | Sensitivity, specificity, positive predictive values, and negative predictive values in the use of CBCL scales for the screening of psychiatric comorbidity in paediatrically referred ADHD youth |
|---------------------|---------------------|---------------------|---------------------|---------------------|
|                      | Aggressive Behavior T-score |                      |                      |                      |
|                      | >60  | >70  | >60  | >70  | >60  | >70  | >60  | >70  | >60  | >70  |
| Conduct disorder     | PPV  | NPV  | SE   | SP   | PPV  | NPV  | SE   | SP   | PPV  | NPV  |
| >60                  | 41   | 96   | 82   | 80   | 86   | 90   | 32   | 96   | 86   | 90   |
| >70                  | 45   | 89   | 29   | 94   | 80   | 89   | 24   | 99   | 80   | 89   |
| Bipolar disorder     | PPV  | NPV  | SE   | SP   | PPV  | NPV  | SE   | SP   | PPV  | NPV  |
| >60                  | 15   | 98   | 71   | 74   | 14   | 95   | 14   | 95   | 14   | 95   |
| >70                  | 18   | 95   | 29   | 92   | 20   | 95   | 14   | 96   | 20   | 95   |
| Major depression     | PPV  | NPV  | SE   | SP   | PPV  | NPV  | SE   | SP   | PPV  | NPV  |
| >60                  | 29   | 92   | 59   | 75   | 40   | 89   | 35   | 91   | 40   | 89   |
| >70                  | 44   | 88   | 24   | 95   | 43   | 88   | 18   | 96   | 43   | 88   |
| Multiple anxiety      | PPV  | NPV  | SE   | SP   | PPV  | NPV  | SE   | SP   | PPV  | NPV  |
| >60                  | 51   | 84   | 65   | 75   | 55   | 77   | 35   | 88   | 55   | 77   |
| >70                  | 65   | 77   | 32   | 93   | 64   | 75   | 21   | 95   | 64   | 75   |
| Any comorbid disorder| PPV  | NPV  | SE   | SP   | PPV  | NPV  | SE   | SP   | PPV  | NPV  |
| >60                  | 65   | 67   | 45   | 82   | 80   | 63   | 24   | 96   | 80   | 63   |
| >70                  | 67   | 59   | 12   | 96   | 71   | 59   | 10   | 97   | 71   | 59   |

PPV, positive predictive value; NPV, negative predictive value; SE, sensitivity; SP, specificity. All numbers reported in tables are percentages.
sensitivities were relatively low, but the NPVs and specificities were relatively high, indicating that the test is much better at ruling out these specific disorders than ruling them in.

DISCUSSION
In a sample of paediatrically referred ADHD probands, ROC analysis indicated that the CBCL Delinquent Behavior and Aggressive Behavior scales best converged with the structured interview derived diagnoses of CD and BPD, the Anxious/Depressed and Aggressive Behavior scales corresponded with major depression, and the Anxious/Depressed and Attention Problem scales corresponded with anxiety disorders. These results extend to a paediatrically referred population previously reported findings in psychiatric samples documenting good convergence between structured interview diagnoses and syndrome congruent CBCL scales.

These results in paediatrically referred children are remarkably consistent with our previous work in a psychiatrically referred sample.26 Additionally, the present results agree with those presented by Steingard and colleagues20 who showed that CBCL scores in children with ADHD and associated comorbidity were significantly more impaired compared to those of ADHD children without comorbidity. Taken together, these findings support the utility of the CBCL to identify patterns of comorbidities within the context of ADHD.

Our new ROC analysis showed that the Delinquent Behavior and Aggressive Behavior scales were the best predictors of CD. Similar results were found by Kasius and colleagues27 who also reported good convergence with both the CBCL Aggressive Behavior and Delinquent Behavior scales with the diagnosis of CD. Conditional probability analysis indicated that these scales have very good discriminating utility to screen for CD.

The Delinquent Behavior and Aggressive Behavior scales of the CBCL were also the most informative in the prediction of BPD. These findings bear striking similarities to a previous study that examined the utility of the CBCL to identify preadolescent children with paediatric bipolar disorder28 in a psychiatrically referred population. That study also found significant increases in the Delinquent Behavior, Aggressive Behavior, and Anxious/Depressed scales as well as the Thought Problems scales compared with findings in children with ADHD, supporting the hypothesis that the CBCL was helpful in differentiating paediatric bipolar disorder from ADHD. Similar results were reported by Geller and colleagues26 and further expanded on by Hazell and colleagues29 and summarised by Mick and colleagues30 using a meta-analysis.

Our results also showed good convergence between the CBCL Anxious/Depressed scale and the presence of anxiety disorders. This finding is consistent with previous work in psychiatric samples.19 21

ROC and conditional probability analyses revealed that the CBCL performed reasonably well as a screening tool for comorbidity in ADHD children in the primary care setting. For example, the PPV and NPV of 65% and 77% for the CBCL Anxious/Depressed scale and Attention Problems scale were fair screeners of anxiety disorders, indicating that 65% of cases screened positive and 23% of those screened negative would be diagnosed with anxiety disorders. Likewise, conditional probability analysis showed that the Anxious/Depressed scale and Attention Problems scale were fair screeners for major depression in children in the primary care setting, with a PPV and NPV of 65% and 77% respectively.

The presence of at least one comorbid disorder (Any Comorbidity) was best predicted by the Aggressive Behavior scale and the Anxious/Depressed scale. Conditional probability analysis showed that these scales performed fairly well as a screen for at least one comorbidity when using a cut-off of >60 on the Aggressive Behavior scale and >70 on the Anxious/Depressed scale. These cut-off points yielded a PPV and NPV of 80% and 63% respectively indicating that 80% of cases screened positive for either CD, BPD, anxiety disorders, or major depression by the CBCL and 27% of those screened negatively would have one of these disorders when assessed by structured diagnostic interview. These results suggest that the CBCL is a viable option for screening ADHD children for psychiatric comorbidity in the primary care setting.

When evaluating the performance of the CBCL as a screening tool, it is important to consider the effect of prevalence on PPV and NPV. As shown in fig 1, given constant sensitivities and specificities of 25% and 95%, respectively, the PPV and NPV vary according to prevalence. That is, the PPV increases as prevalence increases, while the NPV decreases as prevalence increases. Thus, when considering the CBCL as a screening tool in a given clinical setting, the base rate of comorbid disorders in the service population should be taken into account.

The CBCL achieved very high specificity (>90%), but generally low sensitivity. Given these results, the utility of the CBCL as a screening device can only be defended if the benefit of detecting a minority of cases offsets the costs of the screen coupled with the costs of false positives. That is, false positive cases lead to unnecessary costs in psychiatric follow-up evaluations, a shortcoming that needs to be weighed against the financial and human burden of failing to identify and treat a comorbid disorder that would have gone undetected if the screening programme were not undertaken. Given the low rate of false positives, the affordability of the CBCL, and the human and financial burden of psychiatric disorders in youth, this cost-benefit ratio is likely to be favourable. Also, it is possible that a psychiatric evaluation for a false positive screen may serendipitously detect another psychiatric disorder that was not screened for, which adds further benefit to the screening programme.

These findings should be viewed in light of some methodological limitations. Since our subjects were mostly Caucasian, our findings may not generalise to minorities. Also, since the sample consisted of children that were referred, our findings may not generalise to community samples. Additionally, the relatively small number of bipolar affected subjects (n = 8) may have limited our ability to evaluate the utility of the CBCL to screen for this disorder. For each disorder, we chose the two scales with the largest AUCs. Although more formal, statistical methods are available to compare ROC curves, we chose not to incorporate statistical inference into this selection process because of the
What is already known on this topic

- ADHD is highly comorbid with other psychiatric disorders
- The clinical scales of the CBCL are correlated with psychiatric diagnoses in psychiatric samples, including ADHD samples

What this study adds

- The CBCL is useful as a screen for comorbid disorders in a paediatrically referred ADHD sample

large number of tests we would have to conduct and the inflated type I error rate that would follow. Also, we used the 1991 version of the CBCL. Clinicians would likely be using the 2001 version, and thus the scale may perform differently. However, the updates are minor and any changes in performance should also be minimal. Finally, the mother of each child completed both the CBCL and the structured diagnostic interview. The performance of the CBCL against another validation standard (that is, a teacher report or a physician rating) may yield different results.

Despite these considerations, our results show good convergence between syndrome congruent scales of the CBCL with structured interview derived diagnoses of CD, BPD, MD, and anxiety disorders in paediatrically referred ADHD children. These results suggest that the CBCL may be a useful screening tool to help identify key comorbid disorders in the primary care setting, especially CD and at least one major comorbid disorder, and as such could be a useful diagnostic aid for primary care physicians.

**References**

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:
- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with Clinical Evidence editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available.
- To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).
The CBCL as a screen for psychiatric comorbidity in paediatric patients with ADHD

J Biederman, M C Monuteaux, E Kendrick, K L Klein and S V Faraone

Arch Dis Child 2005 90: 1010-1015
doi: 10.1136/adc.2004.056937

Updated information and services can be found at:
http://adc.bmj.com/content/90/10/1010

These include:

References

This article cites 29 articles, 0 of which you can access for free at:
http://adc.bmj.com/content/90/10/1010#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Child health (3922)
Attention-deficit hyperactivity disorder (93)
Child and adolescent psychiatry (paediatrics) (683)
Adolescent health (329)
Screening (epidemiology) (558)
Screening (public health) (553)
Mood disorders (including depression) (39)
Anxiety disorders (including OCD and PTSD) (28)
Developmental paediatrics (128)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/