During the SARS outbreak, temperature monitoring was mandatory for all Singapore schoolchildren. None of the Singapore children with SARS were detected through school temperature screening. However, temperature monitoring procedures have a powerful psychological effect of reassuring parents and the public that schools are safe during a SARS outbreak.

During the severe acute respiratory syndrome (SARS) outbreak in Singapore, there was concern that SARS could spread rapidly in schools. Since SARS patients are infectious only when febrile, twice daily temperature monitoring of all schoolchildren from 6 to 16 years of age was made mandatory in Singapore during the period 30 April to 25 July 2003. All pupils were issued with a personal thermometer and trained to take their own temperatures under the supervision of teachers. Students were not allowed to attend school if their temperature reading was >37.8°C for students ≤12 years old or >37.5°C for students >12 years old.1 As a consequence of this policy, some otherwise asymptomatic children were turned away from school because of high temperatures.

The objectives of this study were to determine the incidence and causes for persistently high temperature readings in asymptomatic Singapore schoolchildren.

PATIENTS AND METHODS

All asymptomatic children who had (a) persistently increased temperature readings (defined as ≥2 temperature readings above the cut-off temperatures per week for ≥2 consecutive weeks) and (b) no contact history with SARS and/or travel history to a country with SARS within the previous 10 days, were identified by the Ministry of Education and referred to the Ministry of Health for evaluation.

All students were seen by a panel of three doctors and a dental officer, and their temperature logs studied. All children were investigated with full blood count, peripheral blood film, C reactive protein, erythrocyte sedimentation rate, urine microscopy, and chest radiograph. Additional tests were performed if indicated. The panel of three doctors discussed each case and assigned a final diagnosis.

RESULTS

A total of 499 778 children had mandatory temperature screening in the period 30 April to 25 July 2003, of which 67 students fulfilled referral criteria. The referral rate was 1.07 children per 100 000 children-weeks of screening.

Table 1 summarises the demographic characteristics and diagnoses of these students. The majority (89.5%) did not have an identifiable pathological cause and were classified as normal variants with high basal body temperatures. Of these, 12 (20.0%) had infrequent (high temperature readings <30% of all readings) while 11 (18.3%) had frequent temperature spikes (high temperature readings >70% of all readings) respectively. There was no relation between the occurrence of the temperature spike and the time of day. None of the children had SARS by clinical assessment based on the WHO case definition.2 Of the six children with a pathological cause, their high temperatures settled with treatment.

All 67 children were followed up for three months and all have remained well. None required hospitalisation and none were diagnosed with a life threatening illness.

DISCUSSION

This is a large scale nationwide study involving nearly 500 000 children. To our knowledge, this is the first community study on asymptomatic children with persistently increased body temperatures. Only 9.0% of the children referred had an identifiable pathological cause. The pathologies were mild, ranging from dental to respiratory infections.

Parents whose children have persistently increased temperatures as high as 38.2°C on screening but are otherwise well with no abnormalities on medical review can be reassured that their children are healthy with no serious pathologies. We postulate that these children have high basal body temperatures secondary to decreased thermoregulatory abilities.

None of the Singapore children diagnosed with SARS were detected through school temperature screening. As was observed with temperature screening of travellers at points of entry into a country, there were only two SARS cases detected among 36 million travellers screened in Hong Kong.1

Table 1 Demographic characteristics and diagnoses of the students seen at the temperature assessment clinic (n = 67)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>43 [64.2%]</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>32 [47.8%]</td>
</tr>
<tr>
<td>Malay</td>
<td>24 [35.8%]</td>
</tr>
<tr>
<td>Indian</td>
<td>10 [14.9%]</td>
</tr>
<tr>
<td>Japanese</td>
<td>1 [1.5%]</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10.2</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.5</td>
</tr>
<tr>
<td>Range</td>
<td>6–16</td>
</tr>
<tr>
<td>Maximum temperature recorded (°C)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>38.2</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.2</td>
</tr>
<tr>
<td>Range</td>
<td>37.8–38.7</td>
</tr>
<tr>
<td>Diagnoses</td>
<td></td>
</tr>
<tr>
<td>High basal temperature</td>
<td>60 [89.5%]</td>
</tr>
<tr>
<td>Thermometer fault</td>
<td>1 [1.5%]</td>
</tr>
<tr>
<td>Dental problems (caries or erupting teeth with pericoronitis)</td>
<td>3 [4.5%]</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>1 [1.5%]</td>
</tr>
<tr>
<td>Pneumonia (non-SARS)</td>
<td>1 [1.5%]</td>
</tr>
<tr>
<td>Autoimmune thyroiditis and positive antinuclear antigen</td>
<td>1 [1.5%]</td>
</tr>
</tbody>
</table>
our experience with mandatory temperature monitoring in
schools is that it is of low yield. However, temperature
monitoring procedures have a very powerful psychological
effect of reassuring parents and the public that schools are
safe during a SARS outbreak. This is an important
consideration which cannot be discounted. With the simpli-
fication and streamlining of procedures to reduce inconve-
nience to students and schools, temperature monitoring
remains a useful community response in the event of an
outbreak.

ACKNOWLEDGEMENTS
The authors thank the Ministry of Education (Singapore) for their
assistance during the course of this study.

Authors’ affiliations
S Y Chng, B W Lee, Department of Paediatrics, The Children’s Medical
Institute, National University Hospital, Singapore
F Chia, K K Leong, Y P Kwang, R Vaithinathan, School Health Service
Division, Health Promotion Board, Singapore
S Ma, C C Tan, Ministry of Health, College of Medicine Building,
Singapore
Funding: Ministry of Health, Singapore
Ethical approval was obtained from the Ministry of Health (Singapore)
Correspondence to: Dr S Y Chng, Department of Paediatrics, The
Children’s Medical Institute, National University Hospital, 5 Lower Kent
Ridge Road, Singapore 119074, Singapore; paev18@nus.edu.sg
Accepted 15 December 2003

REFERENCES
1 Brayden RM, Daley MF, Brown JM. Ambulatory and community pediatrics. In:
Hay WW, Hayward AR, Levin MJ, Sondheimer JM, eds. Current pediatric
2 World Health Organisation. Case definitions for surveillance of severe acute
respiratory syndrome (SARS). URL: http://www.who.int/csr/sars/
casedefinition/en.
3 SARS Expert Committee. SARS Expert Committee Report, Appendix IV: Facts
and figures on the SARS epidemic in Hong Kong. URL: http://www.sars-

ARCHIVIST

Hypoxaemia in sickle cell disease

Hypoxaemia, generalised or local, causes sickling of red cells in people with sickle cell
disease and there is evidence that nocturnal hypoxaemia may be a cause of central
nervous system complications and vaso-occlusive crises. Researchers in Philadelphia
(BM Yamaja Setty and colleagues. Lancet 2003;362:1450–5) have shown that children with
severe sickle cell disease may be hypoxaemic both by night and by day and that the
hypoxaemia is related to the degree of anaemia and associated with changes likely to lead to
tissue damage.

They studied 37 patients aged 3–19 years with sickle cell disease (28 HbSS, 9 Hb SC) and
ten controls, measuring daytime and overnight blood oxygen saturation (SaO₂) by pulse
oximetry. Blood was taken for measurement of concentrations of vascular cell adhesion
molecule 1 (VCAM-1) and markers of activation of neutrophils (L-selectin and leukotriene
B4), and platelets (P-selectin). Fifteen (54%) of the children with HbSS, but none of the Hb
SC group, had sleeping hypoxaemia, defined as mean sleeping SaO₂ 93% or less. There was
no significant difference between sleeping and waking SaO₂.

Daytime and night-time hypoxaemia was demonstrated in over half of the children with
HbSS and was associated with a greater degree of anaemia, increased red cell adhesion to
endothelium, and an increase in markers of neutrophil and platelet activation. Is the
hypoxaemia the cause or the result of the observed changes? These researchers have
previously published evidence that the hypoxaemia in their patients is not due to lung
disease. In severe sickle cell disease greater anaemia is associated with a greater shift to the
right of the haemoglobin dissociation curve and they propose that it is this that leads to
 cellular activation and sickle cell complications. Clinicians, they say, may need to take more
notice of modest levels of hypoxaemia and be prepared to intervene more readily.
Hypoxaemia in sickle cell disease

Arch Dis Child 2004 89: 739

Updated information and services can be found at:
http://adc.bmj.com/content/89/8/739

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://adc.bmj.com/content/89/8/739#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/