Urinary tract infection: is there a need for routine renal ultrasonography?

G Zamir, W Sakran, Y Horowitz, A Koren, D Miron

Aims: To assess the yield of routine renal ultrasound (RUS) in the management of young children hospitalised with first uncomplicated febrile urinary tract infection (UTI).

Methods: All children aged 0–5 years who had been hospitalised over a two year period with first uncomplicated febrile UTI in a medium size institutional regional medical centre were included. Children with known urinary abnormalities and/or who had been treated with antibacterial agents within seven days before admission were excluded. All included children underwent renal ultrasonography during hospitalisation and voiding cystourethrogrammetry (VCUG) within 2–6 months. The yield of RUS was measured by its ability to detect renal abnormalities, its sensitivity, specificity, and positive and negative predictive values for detecting vesicoureteral reflux (VUR), and by its impact on UTI management.

Results: Of 255 children that were included in the study, 33 children had mild to moderate renal pelvis dilatation on RUS suggesting VUR, of whom only nine had VUR on VCUG. On the other hand, in 36 children with VUR on VCUG the RUS was normal. The sensitivity, specificity, positive predictive value, and negative predictive value of abnormal RUS for detecting VUR were 17.7%, 87.6%, 23.5%, and 83.2% respectively. In none of the patients with abnormal RUS was there a change in the management or follow-up hospitalisation needed.

Conclusion: Results show that the yield of RUS to the management of children with first uncomplicated UTI is questionable.

ORIGINAL ARTICLE
Renal pelvis dilatation was defined as suggestive of VUR and graded as mild, moderate, or severe (hydronephrosis).\(^9\) A voiding cystourethrogram was performed within 2–6 months after the infection, and vesicoureteral reflux (VUR) was classified according to the international VUR classification.\(^10\) All imaging studies were read by experienced paediatric radiologists who were unaware of the study.

Impact on management was defined as a change of therapy, investigations, or follow up based on RUS results, that would not have been done otherwise.

Data were stored and analysed using Microsoft Excel. \(\chi^2\) and \(\chi^2\) for trend tests were used for comparison between specificity and sensitivity of different age groups. All p values <0.05 were considered significant.

RESULTS

Overall during the study period 255 of 530 children met the inclusion criteria and were included in the study. Sixty three (24.7%) were boys and 192 (75.3%) girls; mean and median ages were 16 and 9 months respectively (range 8 days to 5 years). The median duration of fever in the hospital was 1 day (range 0–2 days). The median number of days from admission to RUS was 3 days (range 2–7). The main causative agents were \textit{Escherichia coli} 229 (85%), \textit{Klebsiella} sp. 13 (5.1%), and \textit{Proteus} sp. 12 (4.7%). \textit{Pseudomonas aeruginosa}, \textit{Entrococcus fecalis}, and \textit{Morganella morgani} caused 11 infections.

Renal ultrasound showed urinary tract anatomical anomalies in three patients (1.2%): one had an enlargement of the left kidney, one had a small renal cyst, and one had a unilateral double collecting system and severe hydronephrosis.

Abnormal RUS findings suggesting VUR were found in 33 (12.9%) patients; these included mild unilateral pelvis dilatation in 32 patients and moderate unilateral pelvis dilatation in one patient.

Abnormal VCUG was found in 47 (18.4%) patients. Thirteen patients had VUR grade 1, 18 patients had VUR grade 2, 13 patients had VUR grade 3, and one had VUR grade 4 (see table 1). One patient had ureterocele and right ectopic urethra and one had diverticuli in the vesicle.

Of the 33 patients whose RUS was suggestive of VUR, 26 patients (78%) had normal VCUG, including the patient who had moderate unilateral dilatation of the collecting system. Seven patients (21%) had VUR on VCUG: three had grade 1, two had grade 2, and two had grade 3. Of the three patients with renal anomalies, the patient with a small cyst had a normal VCUG, the patient with enlargement of the left kidney had VUR grade 1, and the patient with unilateral double collecting system and severe hydronephrosis had VUR grade 4.

Of 219 patients with normal RUS, 36 (16%) had VUR on VCUG (see fig 1). RUS results did not cause a change in the management of any of the children during and following the admission, either in the antimicrobial agents or in the duration of intravenous therapy. The child who had VUR grade 4, he would have been referred anyway, so the RUS result did not change his management.

The sensitivity, specificity, positive predictive value, and negative predictive value of RUS for detecting VUR were 17.7%, 87.6%, 23.5%, and 83.2% respectively (see table 2).

For the purpose of further analysis, the children were divided into three age groups: 0–2 months (71 children, 44/21 male/female), 2 months–2 years (122 children, 19/103 male/female), and 2–5 years (62 children, 0/62 male/female). The sensitivity, specificity, positive predictive value, and negative predictive value of abnormal RUS for detecting VUR were 27%, 80%, 20%, and 86% respectively in the 0–2 months group, 21%, 88%, 25%, and 86% respectively in the 2 months–2 years group, and 6%, 96%, 33%, and 76% respectively in the 2–5 years group. The differences in sensitivity and specificity between these groups had no statistical significance.

DISCUSSION

Our study shows that RUS findings in children younger than 5 years admitted to hospital with a first episode of uncomplicated febrile UTI are of little value and have no influence on their management.

<table>
<thead>
<tr>
<th>RUS results suggestive of VUR</th>
<th>VUR grade by VCUG</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>+</td>
<td>3 (6.6%)</td>
<td>2 (4.4%)</td>
</tr>
<tr>
<td>-</td>
<td>10 (22%)</td>
<td>16 (35%)</td>
</tr>
<tr>
<td>Total</td>
<td>13 (29%)</td>
<td>18 (40%)</td>
</tr>
</tbody>
</table>
Several recent studies published have shown similar findings regarding the usefulness of RUS as a screening tool for VUR. Mahani and colleagues\(^1\) studied retrospectively 162 children under the age of 5 years with their first episode of UTI who had RUS and VCUG. RUS was suggestive of VUR if dilatation of the pelvi-calycace, dilatation of the ureters, or dilatation of the collecting system of one or both kidneys were reported. The overall prevalence of VUR was 22%. RUS findings were suggestive of VUR in only 14 of 35 children with confirmed VUR, and in 30 of 127 children without VUR. The sensitivity, specificity, and positive and negative predictive values of ultrasound for VUR were 40%, 76%, 32%, and 82% respectively.

Kass and colleagues\(^2\) evaluated 433 children with RUS, VCUG, and dimercaptosuccinic acid renal scan (DMSA). They showed that of 101 children who had a normal RUS and normal DMSA, 23% had VUR using VCUG. Alon and Ganapathy\(^3\) studied 124 patients with UTI, of whom RUS showed hydronephrosis and/or hydroureter in 10 patients (8.1%); however, by VCUG, 38 patients (38%) were found to have VUR. DiPietro and colleagues\(^4\) reported 70 children under the age of 5 years, who were studied using both RUS and VCUG. Five children (7%) had abnormal RUS, of whom two had VUR on VCUG. Of the other 65 children with normal RUS, 19 (29%) had VUR on VCUG. Smellie and Rigden\(^5\) evaluated four methods of investigation in 58 children following UTI. Thirty six patients (62%) were found to have VUR by VCUG, but only eight (13%) had abnormal RUS, giving a sensitivity, specificity, and false negative rate of 42%, 91%, and 78%, of RUS for predicting VUR. She concluded that “ultrasonography is unreliable in detecting VUR, renal scarring, or inflammatory change and, alone, is inadequate for investigating UTI in children”.

These studies show that RUS is an unreliable screening tool for VUR.

The contribution of RUS to the management of the hospitalised child with first simple UTI has been studied. Both Mucci and Maguire\(^6\) and Alon and Ganapathy\(^7\) found that routine RUS had a negligible effect on the clinical management of children with simple UTI. Our findings are in accordance with these results. In none of the children did the RUS finding change the management of the patients.

Goldman and colleagues\(^8\) reported similar findings in 45 neonates with UTI. Of 12 patients with normal RUS, four (33%) had normal VCUG, while of 33 patients with normal RUS, 13 (40%) had VUR on VCUG. However, he found urinary tract abnormalities in 22 of 45 (48%) neonates compared to only 18% in our findings (13 of 71). This discrepancy in results can be partly explained by the patient selection methods, as Goldman \textit{et al} included children who were suspected of urinary tract abnormalities by intrathecal ultrasound, while we excluded any child with known urinary tract anomalies.

In a recently published paper, Hoberman and colleagues\(^9\) studied 309 children, aged 1–24 months, using RUS, DMSA, and VCUG. They found that the sensitivity of RUS for detecting VUR on VCUG was 10%, and PPV was 40%. They also reported that the identified abnormalities did not modify management, and concluded that RUS and renal scanning at this time of the acute illness were of limited value. These results are generally in accordance with ours, and we concur with his conclusions.

Several issues still remain to be clarified: what is the role of intrathecal ultrasound, and does the imaging workup need to be changed according to its findings? Another point in question is the role of DMSA as a screening tool. Since we do not perform DMSA routinely we can not address the issue of VCUG versus DMSA based on our own data; however, in light of the growing amount of evidence against DMSA as a screening tool, further studies addressing this issue are needed.

In conclusion, both this and other studies question the yield of routine RUS in the management of young children with first simple UTI. We believe that RUS should only be performed in children in whom complications such as renal obstruction or abscess are suspected based on an unfavourable clinical course, or in children in whom VUR has been found, in order to look for renal structure abnormalities.

Table 2

<table>
<thead>
<tr>
<th>Age group</th>
<th>n (M/F)</th>
<th>RUS suggestive of VUR</th>
<th>VUR on VCUG</th>
<th>VUR in patients with abnormal RUS</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2 mth</td>
<td>71 (44/27)</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>27%</td>
<td>80%</td>
<td>20%</td>
<td>86%</td>
</tr>
<tr>
<td>2–24 mth</td>
<td>122 (19/103)</td>
<td>16</td>
<td>19</td>
<td>4</td>
<td>21%</td>
<td>88%</td>
<td>25%</td>
<td>86%</td>
</tr>
<tr>
<td>2–5 y</td>
<td>62 (0/62)</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>6%</td>
<td>96%</td>
<td>33%</td>
<td>76%</td>
</tr>
<tr>
<td>Overall</td>
<td>255 (63/192)</td>
<td>34</td>
<td>45</td>
<td>8</td>
<td>17.7%</td>
<td>87.6%</td>
<td>23.5%</td>
<td>83.2%</td>
</tr>
</tbody>
</table>

PPV, positive predictive value; NPV, negative predictive value.

References

Urinary tract infection: is there a need for routine renal ultrasonography?

G Zamir, W Sakran, Y Horowitz, A Koren and D Miron

Arch Dis Child 2004 89: 466-468
doi: 10.1136/adc.2002.019182

Updated information and services can be found at:
http://adc.bmj.com/content/89/5/466

These include:

References
This article cites 15 articles, 5 of which you can access for free at:
http://adc.bmj.com/content/89/5/466#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (1133)
- Radiology (976)
- Radiology (diagnostics) (760)
- Child health (3922)
- Urinary tract infections (115)
- Urinary tract infections (115)
- Urology (446)
- Drugs: infectious diseases (965)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/