Burden of influenza in healthy children and their households

N Principi, S Esposito, R Gasparini, P Marchisio, P Crovari, for the Flu-Flu Study Group*

Objective: A prospective, multicentre study was conducted to evaluate the burden of laboratory confirmed influenza in healthy children and their household contacts.

Methods: The patients were enrolled in four emergency departments (EDs) and by five primary care paediatricians (PCPs) in different Italian municipalities 2 days a week between November 1, 2001 and April 30, 2002. The study involved 3771 children less than 14 years of age with no chronic medical conditions who presented with a respiratory tract infection in EDs or PCP outpatient clinics during the study period. Nasopharyngeal swabs were collected for the isolation of influenza viruses and RNA detection. Information was also collected concerning respiratory illnesses and related morbidities among the study children and their household contacts.

Results: Influenza virus was demonstrated in 352 cases (9.3%). In comparison with the influenza negative children, those who were influenza positive had an older mean age, were more often attending day care centres or schools, more frequently experienced fever and croup, received more antipyretics, and had a longer duration of fever and school absence. Furthermore, their parents and siblings had more respiratory illnesses, received more antipyretics and antibiotics, needed more medical visits, missed more work or school days, and needed help at home to care for the ill children for a longer period of time.

Conclusions: Influenza has a significant clinical and socioeconomic impact on healthy children and their families. Prevention strategies should also focus on healthy children regardless of their age because of their role in disease transmission.

METHODS

Study design

This was a prospective, multicentre study of children with respiratory tract infections in Italy. The patients were enrolled in four emergency departments (EDs) and by five primary care paediatricians (PCPs) in different Italian municipalities between November 1, 2001 and April 30, 2002. The EDs were located in Milan, Genoa, Florence, and Naples, and the PCP clinics in Milan and Genoa. Most of the children enrolled in EDs were taken to the hospital directly by their parents and were not referred by PCPs. The study protocol was approved by the Institutional Review Board of each centre.

Study population

During the study period, we enrolled all subjects younger than 14 years of age without chronic medical conditions presenting on 2 days of the week (Wednesday and Sunday in EDs or Tuesday and Thursday in PCP clinics) with signs and/or symptoms of respiratory tract infection, diagnosed as the presence of at least one of the following symptoms: runny nose, nasal congestion, sore throat, cough, earache, wheezing, and/or shortness of breath, regardless of fever (defined as an axillary temperature ≥38°C). The exclusion criteria included concomitant chronic diseases at increased risk for influenza complications.* Only one child per family was included in the study. Written informed consent of a parent or legal guardian was required, and the older children were asked for their assent. There were no refusals to participate.

Enrolment and evaluation of patients

Upon enrolment, systematic recordings were made of the patients’ demographic characteristics and medical history using standardised written questionnaires. The questions asked included:

Abbreviations: ED, emergency department; PCP, primary care paediatrician; PCR, polymerase chain reaction; RT, reverse transcription; RTI, respiratory tract infection
Reverse transcription (RT) and polymerase chain reaction instructions (RNeasy Minikit, Qiagen, Valencia, CA). Using QIA techniques according to the manufacturer’s instructions (RNasy Minikit, Qiagen, Valencia, CA). Nasopharyngeal samples were collected at enrolment by Virocult swab (Medical Wire and Equipment, Corsham, UK) to obtain specimens for influenza virus isolation and RNA detection. The samples were immediately sent by courier to a central laboratory (Department of Health Sciences, University of Genoa, Genoa), where they were divided into two fractions: one was inoculated into MDCK cells for isolation and the other was used for detection, typing, and subtyping by gene amplification as previously described.17–20 The isolated strains were further identified by a haemagglutination inhibition test using ferret post-infection sera at the WHO Influenza Center, London, UK. Viral RNA was extracted using QIA techniques according to the manufacturer’s instructions (RNeasy Minikit, Qiagen, Valencia, CA). Reverse transcription (RT) and polymerase chain reaction (PCR) were performed using standard methodologies.18–20

The medical history of the children was re-evaluated 5–7 days after enrolment and until the resolution of their illness by means of interviews and clinical examination by trained investigators using standardised questionnaires. During this evaluation, information regarding respiratory illnesses and related morbidity among households was also obtained. Parents or legal guardians were asked to answer a list of questions regarding the outcome of the disease in their children (for example, final diagnosis, administered medication, hospitalisation, duration of signs/symptoms of the illness, medical visits, examinations, number of school days lost) and the involvement of other family members (for example, respiratory diseases in household contacts, medication, hospitalisation, medical visits, number of work days lost by parents to care for their ill children and their own respiratory diseases, number of days of domestic help required to care for ill children). All data of the study children and their households were verified from medical records.

Statistical analysis
The data of all patients were analysed using SAS for Windows v. 12 (SAS Institute, Cary, NC, USA), and comparisons made between influenza positive and influenza negative cases, influenza positive children enrolled in EDs and by PCPs, influenza A and influenza B cases, and influenza positive children by age (<2 years, 2–5 years, >5 years). A p value of <0.05 was considered statistically significant for all tests. Parametric data were compared using analysis of variance (ANOVA); abnormally distributed or non-parametric data were analysed using the Kruskal-Wallis test. Categorical data were analysed using contingency analysis and the χ² or Fisher’s test.

RESULTS
Epidemiology
The study included 3771 children younger than 14 years of age (1990 males; median age: 2.5 years), 2970 (78.8%) enrolled in EDs, and 801 (21.2%) by PCPs. Influenza virus was demonstrated in 352 cases (9.3%): 260/2970 (8.7%) children enrolled in EDs and 92/801 (11.5%) enrolled by PCPs (p = 0.022). Influenza A viruses were identified in 183 cases (52.0%; 129 H3N2, 70.5%; 54 H1N1, 29.5%) and influenza B virus in 169 (48.0%). In all cases, influenza viruses were detected by PCR and in 319/352 (90.6%) samples isolation of influenza viruses was also obtained. No significant difference was observed in the epidemiology of influenza infection in the different municipalities.

Figure 1 shows the distribution of influenza positive swabs. Considering all the influenza viruses together, the peak incidence of positive cases (at least 10% of the total number of positive influenza virus tests) was between the 3rd and 10th weeks of 2002, the highest incidence occurring in the 7th week (17.4% in EDs and 35.3% in PCP clinics) (p = 0.019). Influenza B virus circulated earlier than influenza A viruses, peaking between the 3rd and 7th weeks of 2002 versus the 8th and 10th weeks.

Characteristics of the study patients
Table 1 shows the general characteristics of the influenza positive and influenza negative children; the only significant difference was median age, which was higher in the influenza positive children. However, as there were 109, 167, and 76 cases of influenza A and B in children <2 years, 2–5 years, and >5 years of age, respectively, 78.4% of all influenza cases were in children younger than 5 years of age.

The influenza positive children seen by PCPs had a significantly older mean (SD) age than those enrolled in EDs (5.48 (3.38) v 3.43 (2.56) years, p<0.0001), and were significantly more frequently affected by influenza B infections (52/801, 6.5% v 117/2970, 3.9%, p = 0.002). Influenza A cases were equally distributed in the different age groups (<2 years, 2–5 years, >5 years), whereas the influenza B cases had a significantly older mean age than the influenza A cases (4.81 (3.24) v 3.19 (2.38) years, p<0.0001) (fig 2). There were no other significant differences in the general characteristics of the children enrolled in EDs or by PCPs, or between influenza A and influenza B positive subjects.

Table 2 shows the data on clinical presentation, the diagnostic methods used at enrolment, therapeutic approaches, and clinical outcomes.

The clinical presentation of respiratory tract infection was similar among the influenza positive and influenza negative children, but fever and cough were significantly more frequent among the former, and acute otitis media was significantly more frequent among the latter. Croup was significantly more frequent in the influenza positive children enrolled by PCPs than in those enrolled in EDs (36/92, 39.1% v 16/260, 6.1%, p<0.0001), but there was no other significant between group difference. The children with influenza B virus had croup significantly more frequently and pharyngitis significantly less frequently than those with influenza A viruses (35/169, 20.7% v 17/183, 9.2%, p = 0.004, and 69/169, 40.8% v 99/183, 54.0%, p = 0.017); no other significant differences were detected. The influenza positive patients aged <2 years had fever at any time during influenza illness significantly less frequently than those aged 2–5 years (88/109, 80.7% v 155/167, 92.8%, p = 0.004) or >5 years (88/109, 80.7% v 72/76, 94.7%, p = 0.011); no other age related differences were observed.

The diagnostic methods used at enrolment were similar in influenza positive and influenza negative children, influenza positive children enrolled in EDs or by PCPs, influenza A and B cases, and influenza positive children of different ages.

In terms of therapy, the influenza positive children received antipyretics significantly more often and for longer periods than their negative counterparts, whereas there was no significant difference in antibiotic prescription and use.
Despite the international campaign for control of injudicious antibiotic use, antibiotic prescriptions were dispensed for more than 50% of the children in both the groups. Antiviral agents were not used in any case. No difference in medication usage was observed between the influenza positive children enrolled in EDs or by PCPs, or between influenza A and influenza B virus cases diagnosed in 2001 and 2002, in four Italian municipalities.

Figure 1 Distribution of laboratory diagnosis of influenza expressed as a percentage of influenza A and influenza B cases diagnosed in the 3771 study children with acute respiratory tract infections without chronic medical conditions enrolled between November 1, 2001 and April 30, 2002, in four Italian municipalities (panel A). The distribution of influenza cases expressed as a percentage of acute respiratory tract infections diagnosed in the 2970 subjects enrolled in EDs and the 801 seen by PCPs is also shown (panel B).

Table 1 General characteristics of the study children by influenza diagnosis

<table>
<thead>
<tr>
<th>Influenza diagnosis</th>
<th>Positive (n = 352)</th>
<th>Negative (n = 3419)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, male (%)</td>
<td>185 (52.5)</td>
<td>1740 (50.9)</td>
</tr>
<tr>
<td>Median age (interquartile range), years</td>
<td>3.20 (2.00–8.50)*</td>
<td>2.50 (1.40–7.40)</td>
</tr>
<tr>
<td>Vaccinated against influenza (%)</td>
<td>7 (2.0)</td>
<td>100 (2.9)</td>
</tr>
<tr>
<td>Mean family size</td>
<td>3.60</td>
<td>3.67</td>
</tr>
<tr>
<td>No. of household contacts (total)</td>
<td>915</td>
<td>9128</td>
</tr>
<tr>
<td>No. of parents (total)</td>
<td>704</td>
<td>6838</td>
</tr>
<tr>
<td>No. of siblings (total)</td>
<td>211</td>
<td>2290</td>
</tr>
<tr>
<td>Working mothers (%)</td>
<td>310/352 (88.1)</td>
<td>2940/3419 (85.9)</td>
</tr>
<tr>
<td>Working fathers (%)</td>
<td>352/352 (100.0)</td>
<td>3419/3419 (100.0)</td>
</tr>
<tr>
<td>Household contacts vaccinated against influenza (%)</td>
<td>44/915 (4.8)</td>
<td>543/9128 (5.9)</td>
</tr>
<tr>
<td>Mean number of rooms in the home</td>
<td>3.05</td>
<td>3.19</td>
</tr>
<tr>
<td>Exposure to passive smoking (%)</td>
<td>119 (33.8)</td>
<td>1122 (32.8)</td>
</tr>
<tr>
<td>Full time child care attendance (%)</td>
<td>310 (88.1)</td>
<td>2906 (85.0)</td>
</tr>
<tr>
<td>Mean (SD) number of RTIs in the previous 6 months</td>
<td>1.43 (1.71)</td>
<td>1.64 (1.86)</td>
</tr>
<tr>
<td>Mean (SD) number of antibiotic courses in the previous 6 months</td>
<td>0.58 (0.98)</td>
<td>0.68 (1.23)</td>
</tr>
<tr>
<td>Mean (SD) number of hospitalisations in the previous 3 months</td>
<td>0.02 (0.16)</td>
<td>0.03 (0.17)</td>
</tr>
</tbody>
</table>

*p<0.0001 v influenza negative children; no other statistically significant differences.

15–6 days/week, 6–8 hours/day.

RTIs, respiratory tract infections.
influenza B cases. The influenza positive children aged <2 years were prescribed antipyretics significantly less frequently than the children aged 2–5 years (73/109, 66.9% vs 133/167, 80.8%, p = 0.026) or >5 years (63/76, 80.3%, p = 0.024); no other age related differences were observed.

The influenza positive children had a longer duration of fever and school absence (evaluated among children with full time child care attendance) than the influenza negative children, whereas the prevalence of hospitalisation, its duration, and the number of additional medical visits were similar. No significant differences were observed between the influenza positive children enrolled in EDs or by PCPs, between influenza A and influenza B cases, or between the different age groups.

Socioeconomic effect of influenza among households

Table 3 shows that the households of the influenza positive children had significantly more respiratory tract infections than those of the influenza negative children, received significantly more antipyretics and antibiotics, needed significantly more medical visits, missed significantly more work or school days, and needed significantly more help at home to care for ill children.

No significant differences in socioeconomic impact were observed between the households of influenza positive children enrolled in EDs or by PCPs. Home help to care for ill children was required for a significantly longer time in influenza B than in influenza A cases (1.30 (2.35) days vs 0.77 (1.82) days, p = 0.0016). No other significant between group difference was found.

DISCUSSION

To the best of our knowledge, this is the first prospective study simultaneously evaluating the effect of laboratory confirmed influenza on healthy children and their household contacts, comparing influenza infection in different paediatric practice settings, analysing differences between influenza A and influenza B in a large group of children, and studying the age related characteristics of influenza infection. The main findings seem to be those indicating the substantial impact of influenza on healthy children and their families. Like previous studies, we found that healthy children attending day care and school are the most frequently affected by influenza and their illness is often associated with a high disease burden in families.

The fact that influenza in healthy children can cause relevant social problems is shown by the observation that our influenza positive children missed significantly more school days than those with respiratory disease due to different pathogens. These data support the wider paediatric use of influenza vaccination and suggest that the current recommendation from the United States encouraging the use of influenza vaccination in healthy children aged <2 years should be extended to older children.

The socioeconomic impact of influenza in healthy children on household contacts, which seems to be significantly
greater than that due to other respiratory infections, is demonstrated by the fact that the parents and siblings of our influenza positive children fell ill significantly more frequently than those living with children suffering from respiratory diseases of different etiology, received more antibiotic and antipyretic prescriptions, and required more medical visits. They were also more frequently absent from work or school and required home help for a longer time to care for ill children. These findings extend some previously published data,14, 25, 26 and indicate that influenza in healthy children considerably affects their families, thus suggesting that influenza prevention may have a significant household impact.

The importance of influenza in paediatric practice is highlighted by the number of peak period visits to EDs and PCP clinics for respiratory diseases due to influenza viruses, with only marginal differences between the two settings. Although in our study children were enrolled during only 2 days per week, the long duration of the study period strengthens our conclusions. Moreover, the considerable influenza related medical burden even in otherwise healthy children is confirmed by the high rate of hospitalisation among our laboratory confirmed cases, regardless of age. Although no other viruses were detected, it is probable that a significant number of the influenza negative cases were due to respiratory syncytial virus (RSV) infection among influenza positive children, as RSV is the virus that is most frequently associated with otitis media in influenza positive than influenza negative children. This may be related to a high incidence of respiratory syncytial virus (RSV) infection among influenza positive children, as RSV is the virus that is most frequently associated with otitis media, or might be because the frequency of acute otitis media is related to age.34, 35 and the mean age of our influenza negative children was less than that of our influenza positive patients, with a significant number being aged <3 years; on the other hand, no other characteristic appeared different between the two groups.

In conclusion, our results demonstrate that influenza in otherwise healthy children has a significant effect on the children themselves and their household contacts. The prevention of influenza among these children may significantly reduce the number of sick subjects, the prevalence of hospitalisation, and the circulation of infection within households. Although any change in the policy of influenza vaccination requires a balanced evaluation of many aspects, our results suggest that prevention strategies should also focus on healthy children regardless of age because of their role in disease transmission.

Authors’ affiliations
N Principi, S Esposito, P Marchisio, Institute of Paediatrics, University of Milan, Milan, Italy
R Gasparini, P Crovari, Department of Health Sciences, University of Genoa, Genoa, Italy

Table 2 Clinical presentation, diagnostic methods at enrolment, therapeutic approaches, and clinical outcomes among the study children by influenza diagnosis

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Positive (n = 352)</th>
<th>Negative (n = 3419)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary temperature ≥38°C (%)</td>
<td>315 (91.4)</td>
<td>2393 (70.0)</td>
</tr>
<tr>
<td>Common cold (%)</td>
<td>51 (14.4)</td>
<td>463 (13.5)</td>
</tr>
<tr>
<td>Pharyngitis (%)</td>
<td>168 (47.7)</td>
<td>1537 (44.9)</td>
</tr>
<tr>
<td>Acute otitis media (%)</td>
<td>37 (10.5)</td>
<td>514 (15.0)</td>
</tr>
<tr>
<td>Croup (%)</td>
<td>52 (14.7)</td>
<td>273 (8.0)</td>
</tr>
<tr>
<td>Acute bronchitis (%)</td>
<td>22 (6.2)</td>
<td>307 (9.1)</td>
</tr>
<tr>
<td>Wheezing (%)</td>
<td>11 (3.1)</td>
<td>189 (5.5)</td>
</tr>
<tr>
<td>Pneumonia (%)</td>
<td>11 (3.1)</td>
<td>136 (4.0)</td>
</tr>
<tr>
<td>Diagnostic methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine blood examinations (%)</td>
<td>30 (8.5)</td>
<td>307 (8.9)</td>
</tr>
<tr>
<td>Microbiological tests (%)</td>
<td>15 (4.2)</td>
<td>170 (4.9)</td>
</tr>
<tr>
<td>Chest radiography (%)</td>
<td>15 (4.2)</td>
<td>211 (6.2)</td>
</tr>
<tr>
<td>Therapeutic approaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipyretic prescriptions (%)</td>
<td>269 (76.4)</td>
<td>2051 (59.9)</td>
</tr>
<tr>
<td>Antipyretic use, mean (SD) days</td>
<td>3.23 (1.44)</td>
<td>2.81 (1.45)</td>
</tr>
<tr>
<td>Antibiotic prescriptions (%)</td>
<td>239 (68.4)</td>
<td>1948 (56.9)</td>
</tr>
<tr>
<td>Antibiotic use, mean (SD) days</td>
<td>7.72 (2.47)</td>
<td>7.71 (2.45)</td>
</tr>
<tr>
<td>Clinical outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitalisation (%)</td>
<td>19 (5.4)</td>
<td>173 (5.1)</td>
</tr>
<tr>
<td>Duration of hospitalisation, mean (SD) days</td>
<td>4.08 (1.61)</td>
<td>4.67 (2.16)</td>
</tr>
<tr>
<td>Duration of fever, mean (SD) days</td>
<td>3.03 (1.85)</td>
<td>2.12 (1.78)</td>
</tr>
<tr>
<td>Additional medical visits, mean (SD) number</td>
<td>0.68 (0.23)</td>
<td>0.66 (0.01)</td>
</tr>
<tr>
<td>School absence, mean (SD) days</td>
<td>5.10 (2.55)</td>
<td>4.25 (2.93)</td>
</tr>
</tbody>
</table>

* p<0.0001 and †p = 0.027 v influenza negative children; no other statistically significant differences.

Table 3 Clinical and socioeconomic impact of influenza among the household contacts of the study children

<table>
<thead>
<tr>
<th>Household contacts of children with influenza diagnosis</th>
<th>Positive (n = 915)</th>
<th>Negative (n = 9128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar disease in family contacts (%)</td>
<td>138 (15.1)</td>
<td>863 (9.5)</td>
</tr>
<tr>
<td>Parents (%)</td>
<td>96/704 (13.6)</td>
<td>544/6383 (7.9)</td>
</tr>
<tr>
<td>Siblings (%)</td>
<td>42/211 (19.9)</td>
<td>319/2290 (13.9)</td>
</tr>
<tr>
<td>Antipyretic prescriptions (%)</td>
<td>123 (13.4)</td>
<td>610 (6.7)</td>
</tr>
<tr>
<td>Parents (%)</td>
<td>69/704 (9.8)</td>
<td>310/6383 (4.5)</td>
</tr>
<tr>
<td>Siblings (%)</td>
<td>54/211 (25.6)</td>
<td>300/2290 (13.1)</td>
</tr>
<tr>
<td>Antibiotic prescriptions (%)</td>
<td>72 (7.9)</td>
<td>301 (13.3)</td>
</tr>
<tr>
<td>Parents (%)</td>
<td>36/704 (5.1)</td>
<td>182/6383 (2.7)</td>
</tr>
<tr>
<td>Siblings (%)</td>
<td>37/211 (17.5)</td>
<td>119/2290 (5.2)</td>
</tr>
<tr>
<td>Hospitalisation (%)</td>
<td>3 (0.3)</td>
<td>11 (0.1)</td>
</tr>
<tr>
<td>Parents (%)</td>
<td>2/704 (0.3)</td>
<td>7/6383 (0.1)</td>
</tr>
<tr>
<td>Siblings (%)</td>
<td>1/211 (0.5)</td>
<td>4/2290 (0.2)</td>
</tr>
<tr>
<td>Additional medical visits, mean (SD) number</td>
<td>0.39 (0.76)</td>
<td>0.14 (0.47)</td>
</tr>
<tr>
<td>Parents (%)</td>
<td>0.28 (0.55)</td>
<td>0.07 (0.25)</td>
</tr>
<tr>
<td>Siblings (%)</td>
<td>0.48 (0.98)</td>
<td>0.22 (0.73)</td>
</tr>
<tr>
<td>Lost work days (parents), mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For their own illness</td>
<td>1.52 (3.19)</td>
<td>0.72 (2.14)</td>
</tr>
<tr>
<td>For child’s illness</td>
<td>1.25 (2.99)</td>
<td>0.59 (2.02)</td>
</tr>
<tr>
<td>Lost school days (siblings), mean (SD)</td>
<td>1.27 (2.47)</td>
<td>0.49 (2.33)</td>
</tr>
<tr>
<td>Need for help to care for the ill children, mean (SD) days</td>
<td>1.10 (1.76)</td>
<td>0.85 (1.63)</td>
</tr>
</tbody>
</table>

*p<0.0001 and †p = 0.0003 v influenza negative children; no other statistically significant differences.
Information box

Influenza is commonly seen as a serious illness only in the elderly and in persons with chronic conditions that place them at increased risk of complications. Consequently, influenza vaccination is recommended only in subjects more than 64 years of age and in children as well as adults with high risk medical conditions. On the basis of recent findings demonstrating the clinical importance of influenza in childhood, many health authorities now encourage influenza vaccination of healthy children younger than 2 years of age who were previously excluded from vaccination programs.

This study shows the substantial medical and socioeconomic burden of influenza on healthy children and their families. Healthy children attending day care and school are the most frequently affected by influenza and their illness is often associated with a high disease burden in families. Moreover, the results also add further information concerning the importance of influenza in pediatric practice and the clinical picture of pediatric influenza. Overall, the data suggest that prevention strategies should focus also on healthy children regardless of their age because of their role in disease transmission.

This study was supported in part by a grant from Wyeth-Lederle Vaccines, Italy.

No author has a commercial or other association that might pose a conflict of interest.

This study was supported in part by a grant from Wyeth-Lederle Vaccines, Italy.

REFERENCES

www.archdischild.com
Burden of influenza in healthy children and their households

N Principi, S Esposito, R Gasparini, P Marchisio and P Crovari

Arch Dis Child 2004 89: 1002-1007
doi: 10.1136/adc.2003.045401

Updated information and services can be found at:
http://adc.bmj.com/content/89/11/1002

These include:

Supplementary Material
Supplementary material can be found at:
http://adc.bmj.com/content/suppl/2006/06/26/89.11.1002.DC1

References
This article cites 35 articles, 11 of which you can access for free at:
http://adc.bmj.com/content/89/11/1002#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/91/9/797.3.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections

- Child health (3922)
- Influenza (73)
- TB and other respiratory infections (643)
- Drugs: infectious diseases (965)
- Ear, nose and throat/otolaryngology (298)
- Epidemiologic studies (1818)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
LETTER

Adverse effects of rapid isotonic saline infusion

Neville et al reported on a randomised controlled trial of hypotonic versus isotonic saline for rehydration of children with gastroenteritis. They found that isotonic saline was superior with regards to correction of hyponatraemia.1 The majority of patients in the study received a “rapid replacement protocol” which entailed the infusion of 40 ml/kg of isotonic saline over 4 hours in the isotonic saline arm of the study. The authors did not report on important known adverse effects associated with rapid infusion of isotonic saline which have been reported in previous randomised controlled trials of volume support with isotonic saline versus other fluids.

Rapid isotonic saline infusion predictably results in hyperchloraemia.2 The acidosis is due to a reduction in the strong anion gap with an excessive rise in plasma chloride as well as excessive renal bicarbonate elimination.3 In a randomised controlled trial with a mixed group of patients undergoing major surgery, isotonic saline infusion was compared to Hartmann’s solution with 6% hetastarch and a balanced electrolyte and glucose solution. Two thirds of patients in the saline group but none in the balanced fluid group developed postoperative hyperchloraemic acidosis.4 The hyperchloraemic acidosis was associated with reduced gastric mucosal perfusion on gastric tonometry.

Another double blind randomised controlled trial of isotonic saline versus lactated Ringer’s in patients undergoing aortic reconstructive surgery confirmed this result; the acidosis required interventions like bicarbonate infusion and was associated with the application of more blood products.5 Hyperchloraemia was found to have profound effects on eicosanoid release in renal tissue, leading to vasoconstriction and a reduction of the glomerular filtration rate.6 The increased eicosanoid release may also explain the findings of reduced gastric perfusion in hyperchloraemia mentioned above.7 The main adverse effect of saline induced hyperchloraemic acidosis, however, may be the action which is taken to correct the abnormality. Acidosis is often seen as a reflection of poor organ perfusion and poor myocardial function, and a negative base excess may prompt the application of boluses of more saline containing fluids exacerbating the use of blood products, escalation of isotropic support and initiation of ventilatory support.8

The safety of hyperchloraemic acidosis has not been established in prospective studies and in patients with different types of critical illness. Particularly in critically ill patients with co-morbidities like renal disease, more physiological electrolyte solutions (e.g. Ringer’s lactate solution) may be preferable to isotonic saline, and a slow replacement protocol safer than rapid infusions.

Competing interests: none declared

References

2 Prough DS, Bidani A. Hyperchloraemic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology 1999;90:1206–10.

BOOK REVIEW

Weight matters for children

It seems impossible to open a newspaper or turn on the television without the issue of childhood obesity being raised. The government has set targets to reduce the incidence of childhood obesity and school based programmes have been established, and yet the number of children who are obese continues to rise. What seems to be lacking and what this book sets out to provide is specific practical guidance for parents to follow as to what families need to be doing on a day to day basis to ensure children remain healthy and avoid becoming obese.

The primary focus is on parents and carers, and the author, who is a GP, frequently draws on her own experience as a mother to give examples of her own family life, which helps give credence to the messages which run throughout the book. The Issue of choice is dealt with very well and discusses how important it is to give children choice and how parents can influence children to make the right choice. Parents are also encouraged to examine their own parenting styles to see how this influences the behaviour and eating habits of their children.

M Eisenhut
Consultant Paediatrician, Luton & Dunstable Hospital, Lewsey Road, Luton LU4 1DZ, UK; michael.eisenhut@yahoo.com

doi: 10.1136/adc.2006.100123

There are separate sections on preschool children and junior children, covering topics ranging from breast feeding and weaning to explanations about what constitutes a healthy diet. The advice about managing behavioural difficulties around mealtimes is particularly helpful, with sections such as “Tips to avoid becoming wound up at meal times” providing plenty of practical suggestions for families to try. There are also practical suggestions on encouraging physical activity in children and reducing television watching. The issue of dealing with a child who is already overweight is addressed, emphasising the need to take action early, placing this responsibility within the family context. There is also helpful information about understanding children’s psychological wellbeing, examining the issue of low self esteem, bullying, and depression.

The final section covers nutrition and health problems. Basic nutritional information is provided to help make sense of the contents of our food and details what should constitute a healthy well balanced diet. There is a well written section on the scenarios in medical problems encountered which may affect a child’s growth, ranging from cows’ milk allergy to cystic fibrosis, and sources of further information are well referenced.

Overall I felt that this was a well written book, packed full with helpful practical suggestions. As a paediatrician, the advice contained within the chapters covered many of the food related problems seen in clinic. As a parent I also recognised many of the scenarios and remembered many meal times with young toddlers which were far from enjoyable! My one criticism of the book would be the general layout as I felt this was more in keeping with a medical textbook rather than a manual for parents. I’m not sure whether first impressions of the book would encourage parents to pick it up. However, this certainly won’t deter me from recommending this book. I do feel this will be of benefit to all paediatricians to read as well as GPs, health visitors, school nurses, and of course also parents, especially those dealing with turbulent toddlers!

C Grayson

CORRECTIONS

doi: 10.1136/archdischild-2003.045401corr1

This article has been retracted by the publisher because of significant overlap with Principi N, Esposito S, Marchisio P, Gasparini R, Crovari P. Socioeconomic impact of influenza on healthy children and their families. Pediatr Infect Dis J 2003;22(Suppl 10):S207–10.

Photographs 1, 2, 4, and 5 in this article are reproduced by kind permission of Kay Hoover, MD, IBCLC.