Vitamin K deficient bleeding in cystic fibrosis

We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis.

We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis. We would like to report a female infant (initially breast fed and subsequently formula fed) who had received two 1 mg doses of vitamin K orally, and presented at 9 weeks of age (fed) who had received two 1 mg doses of vitamin K deficient bleeding in cystic fibrosis.
The authors suggest that the changes we have observed in our trial could be a speeding up of a normal maturational effect. Half of the child outcomes we measured showed changes compatible with this interpretation, but the other half do not. The latter show either continuing improvement in both groups or more change in the intervention than control group at six month follow up. We will be publishing the results of our 12 month follow up.

The authors also ask whether our results are clinically significant. The differences between intervention and control group scores at 6 months represent effect sizes of around 0.3 (of a standard deviation). In clinical terms such changes are regarded as small. However in public health terms a small change in a large group is often more important than a big change in a small group, so these differences are of public health significance.

Dr Srinivas and colleagues also ask about cost effectiveness. We did not undertake a formal economic analysis in this study, but the costs of the intervention were mainly in the staff time. Taking account of time spent in supervision, but not training, the costs fall somewhere between six and ten hours of group leader time per parent attending the course. Effectiveness in this context is more difficult to estimate and cannot be measured only in terms of immediate behavioural outcomes. The evidence that the quality of parent-child relationships has a long term impact on mental and physical health and on social well being is mounting. Estimating all the societal benefits of this intervention was beyond the scope of our study but could be very considerable.

Dr Srinivas and colleagues also suggest that our results may be invalid because they were not collected by researchers blind to intervention group. All our outcomes were based on self-report by parents, so blinding of study personnel is irrelevant. It is unfortunately not possible, in trials of health promoting interventions, to blind participants to the intervention. Although it is theoretically possible to make such changes in samples of some of these outcomes, such approaches greatly increase the cost of studies and were not possible with the funding we had available.

Finally, and perhaps most importantly, Dr Srinivas and colleagues suggest that NHS resources should be concentrated where the funding we had available.

Adrenal crisis due to inhaled steroids is underestimated

In response to comments by Pearce and Mabin on Professor Russell’s editorial on our paper, they doubt that our survey underestimated the true scale of the problem. I can inform them that this is not the case. Since our survey was completed we have notified of a further seven cases (five children, two adults). All but one of the children had been taking fluticasone in similar dosages to those reported in our survey. Three of these were critically ill and an 8-year-old girl died due to adrenal crisis. The remaining child was only 20 months old and had been given budesonide in extremely high doses of 2080–8000 mcg/day. Both adults had been taking fluticasone (1000 mcg/day, 2250 mcg/day).

Case reporting clearly plays a much greater role than clinical studies in post license surveillance. Russell gives an international 20 year study of drug safety discontinuations, nearly all occurred as a result of case reporting. Despite studies the authors concluded that “it is impossible to know fully the facts as adverse effects both beneficial and harmful at the time of approval”.

Further, it is incorrect for Pearce and Mabin to say that “studies show no increased risk of hypothalamic pituitary axis (HPA) suppression with fluticasone compared with other inhaled steroids”. There are many studies arguing against this assertion. Actually, there is a serious disparity between the results of different safety studies involving fluticasone which requires explanation. While the product monograph claims “mean plasma cortisol concentrations remained within the normal range for adults and children when demonstrating that, even at high doses (2000 mcg), fluticasone propionate is well tolerated with regard to side effects”, many studies suggest otherwise. For example, as little as 88 mcg/day of fluticasone can produce 10% adrenal suppression and 352 mcg/day can produce 50% adrenal suppression, a considerably greater degree than the equipotent dosage of beclometasone, leading those authors to conclude that increasing the dose beyond this point of maximum efficacy resulted in increasing systemic effect, especially with fluticasone metered dose inhaler with its CFC propellant — exactly what we have reported.

Pearce and Mabin correctly state that “individuals have differing sensitivities to inhaled corticosteroids. Idiosyncratic responses to inhaled corticosteroids may occur even at licensed doses”. I agree, however, such patients “disappear” in large multicentre studies, particularly when the pharmaceutical company will not make available data on individual patients. This is of concern as there is evidence that fluticasone is associated with significantly more individual low cortisol values than other inhaled steroids. Also, over 75% of patients developed adrenal crisis greater than one year after starting fluticasone, and it is known that length of time taking inhaled steroids is a major factor in determining the frequency of side effects. How many studies of fluticasone have lasted greater than one year?

Pearce and Mabin correctly state that in recent years, when paediatricians recognize the need for both. The point, however, is that population versus high risk approaches are morefavoured by those who agree with them. The pros and cons of NHS resources should be concentrated were the funding we had available.

The cost of studies and were not possible with outcomes, such approaches greatly increase making “blinded” observations of some of these trials. Although it is theoretically possible to beyond the scope of our study but could be very considerable.

Case reporting clearly plays a much greater role than clinical studies in post license surveillance. Russell gives an international 20 year study of drug safety discontinuations, nearly all occurred as a result of case reporting. Despite studies the authors concluded that “it is impossible to know fully the facts as adverse effects both beneficial and harmful at the time of approval”. Further, it is incorrect for Pearce and Mabin to say that “studies show no increased risk of hypothalamic pituitary axis (HPA) suppression with fluticasone compared with other inhaled steroids”. There are many studies arguing against this assertion. Actually, there is a serious disparity between the results of different safety studies involving fluticasone which requires explanation. While the product monograph claims “mean plasma cortisol concentrations remained within the normal range for adults and children when demonstrating that, even at high doses (2000 mcg), fluticasone propionate is well tolerated with regard to side effects”, many studies suggest otherwise. For example, as little as 88 mcg/day of fluticasone can produce 10% adrenal suppression and 352 mcg/day can produce 50% adrenal suppression, a considerably greater degree than the equipotent dosage of beclometasone, leading those authors to conclude that increasing the dose beyond this point of maximum efficacy... resulted in increasing systemic effect, especially with fluticasone metered dose inhaler with its CFC propellant — exactly what we have reported.

References


G R G Todd
Antimise Hospital, 45 Bush Road, Antim 8741 2LL, UK; drgeoffreytodd@hotmail.com

References

5 Lipworth BJ. Adrenal suppression with chronic dosing of fluticasone propionate compared with beclomethasone in adult asthmatic patients. Thorax 1997; 52:55–8.

www.archdischild.com
Moderately high doses still need to be considered for very young children

In relation to the question of adrenal suppression when using higher doses of inhaled corticosteroid, I believe there is an aspect of dose selection which has not been mentioned by previous authors.

There are limited data on the question of intra-pulmonary drug deposition in children under 3 years but the studies that have been published seem to indicate that around 1–2% of the drug released into the spacer reaches the airways, compared to 15–17% in an adult using the same device. Based on this figure, it seems reasonable to prescribe similar doses to very young children and adults alike.

I note that none of the cases of adrenal impairment have been reported in children under 3 years of age; most of them are significantly older. This could be partly because higher doses are not being used in this age group, but might also be confirmation that a smaller fraction of the drug reaches the airways.

I would argue that there are good reasons to use higher doses, at least initially, when treating very young children. The diagnosis of asthma is exceptionally difficult here, and if a “trial of treatment” is ineffective, one wishes to be reasonably confident that the reason for the negative response was not related to an inadequate dose. A negative response allows the clinician to withdraw ineffective steroid treatment in those infants who may well not have asthma at all. If there is an excellent response, the dose of steroid should be stepped down to the minimum required to control symptoms.

Finally, for clarity, the doses I am referring to are budesonide beclomethasone 800 mcg/day or fluticasone 500 mcg/day.

D P Cochran

Respiratory Unit, Royal Hospital for Sick Children, Yorkhill, Glasgow G3 8SJ, UK.
dominic.cochran@nhs.net

Reference


Cultural representation of newborn feeding

Nicoll and Williams suggested that attitudes to breast feeding need to change: “everyone (not just women) needs to see breast feeding as normal and education needs to start early”. In Italy breastfeeding rates are low. Numerous training initiatives have been set up to heighten awareness with the aim of promoting breastfeeding. These initiatives have been based on implementation of the Baby Friendly Hospital Initiative: three hospitals in the country being nominated “Baby Friendly”.

I was recently invited to discuss the importance of breastfeeding for newborns with two 4th year junior school classes (41 children in total (17 girls and 24 boys), aged between 9 and 10). Before talking to the children, I asked them to draw on a sheet of paper everything they thought was necessary for a baby to grow up healthy. All except four drew a feeding bottle next to a baby; 15 children drew a baby alone with a bottle; only three children drew a baby in his/her mother’s arms, but all these the babies were still holding a bottle. Only two drawings showed the baby with both parents and in without a bottle; the other two drawings without a bottle depicted a scene in the hospital. When I asked how many of them thought that formula milk was the same as mother’s milk, 28 out of 41 raised their hands. I believe this reflects the widespread tendency, also reported in other countries, not only to consider breastfeeding the same as artificial feeding, but “artificial” as “natural”.

In an historic and ever pertinent editorial, the Lancet hoped a warm chain for breastfeeding could be created, and warned about the ambivalent messages often encouraged by the marketing campaigns of formula manufacturers. I feel that the implementation of interventions aimed at supporting breastfeeding should not be limited to the healthcare system, but should cover a wider range of activities, aimed at changing the cultural representation of newborn feeding and at defending breastfeeding.

S Conti Nibali

Family Pediatrician, Azienda Sanitaria Locale, n.5 Messina, Italy; seconti@glauco.it

References

Adrenal crisis due to inhaled steroids is underestimated

G R G Todd

Arch Dis Child 2003 88: 554-555
doi: 10.1136/adc.88.6.554

Updated information and services can be found at:
http://adc.bmj.com/content/88/6/554

These include:

References
This article cites 16 articles, 9 of which you can access for free at:
http://adc.bmj.com/content/88/6/554#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/