Renal tubular dysfunction in children living in the Aral Sea Region

K Kaneko, M Chiba, M Hashizume, O Kunii, S Sasaki, T Shimoda, Y Yamashiro, W Caypil, D Dauletbaev

Background: The Aral Sea region is a natural area seriously polluted by human activities. Recent surveillance revealed the increased prevalence of diverse chronic diseases in children.

Aims: To investigate the function of renal tubules, which are most at risk of damage as a result of heavy metal intoxication, in children of the Aral Sea region.

Methods: A group of 205 children living in Kazalinsk, close to the Aral Sea, and a group of 187 children living in Zhanakorgan, far from the Aral Sea, were examined by means of random urine samples. Both urinary N-acetyl-β-D-glucosaminidase (NAG; U/mmol Cr) and β2 microglobulin (BMG; μg/mmol Cr) were calculated for each subject.

Results: Mean urinary NAG and BMG were both significantly higher in Kazalinsk than in Zhanakorgan (NAG: 0.77 (0.58) and 0.62 (0.37) U/mmol Cr; BMG: 41.8 (54.8) and 22.5 (20.4) μg/mmol Cr, respectively; mean (SD), p < 0.01). The number of children with abnormal values of NAG (>1.5 U/mmol Cr) was significantly more prevalent in Kazalinsk than in Zhanakorgan (7.9% and 2.6%, respectively, p < 0.05).

Conclusion: Renal tubular function of children around the Aral Sea region is profoundly impaired. This should be taken into account when considering the health problems of this area.
for calculation of the ratios of urine NAG per creatinine (U/mmol Cr), and BMG per creatinine (μg/mmol Cr).

Statistical analysis

Results were expressed as mean (SD). As the groups of data were distributed parametrically, statistical analyses were performed using Student’s t test (two tailed analysis) for comparison between the groups. A χ² test with Yates’s correction was also applied for the comparison of prevalence between the groups. A p value less than 0.05 was regarded as significant.

RESULTS

Distribution of age and health data

Of 392 urine samples, 203 were obtained from children of the Kazalinsk region (103 boys, 100 girls; mean age 10.6 (2.5) years) and 189 from children of the Zhanakorgan region (102 boys, 87 girls; mean age 11.1 (2.7) years). There were no significant differences in the distribution of age between these two regions.

Differences between regions in urinary excretions of NAG and BMG

The mean urinary NAG concentration corrected by creatinine (U/mmol Cr) was significantly higher in children living in Kazalinsk than that in children living in Zhanakorgan (see fig 2); mean (SD) values were 0.77 (0.58) and 0.62 (0.37), respectively (p < 0.01). Similarly, there was a significant difference in urinary BMG concentration corrected by creatinine (μg/mmol Cr) between children of Kazalinsk and those of Zhanakorgan (fig 2); mean (SD) values were 41.8 (54.8) and 22.5 (20.4), respectively (p < 0.01).

Prevalence of renal tubular enzymuria and proteinuria

The number of children with abnormal NAG (>1.5 U/mmol Cr) was significantly more prevalent in Kazalinsk than in Zhanakorgan: 16 of 203 children (7.9%) and 5 of 189 children (2.6%), respectively (p < 0.05; table 1). However, there was no significant difference in the number of children with abnormal BMG (>5.94 μg/mmol Cr) between the regions: 185 of 203 children (91.1%) in Kazalinsk and 172 of 189 children (91.0%) in Zhanakorgan (p > 0.05).

DISCUSSION

The deterioration of health among people living in the Aral Sea region in particular has caused much concern and is generally considered to have multifactorial backgrounds. One obvious factor is the impoverishment of the people, resulting in poor nutrition and sanitation. Another is the fact that people are exposed to various toxic chemicals, such as PCB pesticides, and to heavy metals like Pb and Cd. The way by which the population is exposed is generally thought to be from the air, from drinking water, and from various food products.

There have been numerous reports regarding the high frequency of delayed growth and puberty of children and increasing infant mortality rate in this area. It was recently reported that children who lived near the waste incinerators and were supposed to be chronically exposed to environmental pollutants, such as Pb and Cd, PCBs, dioxin-like compounds, and metabolites of volatile organic compounds matured sexually at an older age and testicular volume was smaller in boys than those lived in the control areas; in this study, biomarkers of glomerular or tubular renal dysfunction
in individuals were positively correlated with blood Pb levels. Thus the kidney is one of the most vulnerable organs to various toxic compounds because many xenobiotic substances are excreted through urine. Our study was therefore conducted to investigate the renal tubular function of children living in the Aral Sea region, which might be impaired due to the ecological deterioration.

In order to clarify the influence of ecological factors and to exclude other factors that may affect the urinary concentrations of NAG and BMG, we adjusted the race, age, and sex between the groups. The only difference is the distance from the Aral Sea—that is, Kazalinsk is about 500 km closer to the Aral Sea than Zhanakorgan (fig 1).

The results clearly showed that the prevalence of children with renal tubular dysfunction was extremely high in children around the Aral Sea. This is, to the best of our knowledge, the first report to suggest that renal tubular dysfunction should be taken into account when considering health problems in this area.

Although the reason for renal tubular dysfunction of children in this area is currently unknown, it is possible that children around the area are exposed to various toxic chemicals, such as heavy metals like Pb and Cd, widely known to be toxic enough to damage human renal tubules. In our analytical results, however, concentrations of Pb and Cd were not high in urine, blood, and hair specimens in these subjects. Therefore, other causes might be considered. Uranium is known to be one of the factors which cause renal tubular dysfunction, assessed by increased levels of urinary NAG and BMG. We are now investigating the possibility of uranium as a cause of renal dysfunction.

Furthermore, we postulated that hypercalciuria was more prevalent in Kazalinsk than in Zhanakorgan. A recent study has revealed that hypercalciuria may reflect renal tubular damage caused by Cd because it can impair the uptake of calcium by tubular cells. From these findings, we consider that the high prevalence of renal tubular dysfunction in children around the Aral Sea is due to exposure to a considerable amount of toxic substances contained in the air, drinking water, and various food products in this area.

In conclusion, renal tubular function in children living in the Aral Sea region is severely impaired. As impaired renal tubular function in children can be associated with stunted growth, renal tubular function should be taken into account when considering the health problems of this area.

ACKNOWLEDGEMENTS
The authors thank Dr Amangeldi Kadirbaev and Dr Saken Alseyt, Regional Health Authorities, and Dr Z Mazhitova, National Children’s Rehabilitation Center “URPAK”, Kazakhstan for their cooperation. This study was supported by a grant from the Toyota Foundation.

Table 1 Prevalence of renal tubulopathy in children living in the Aral Sea region

<table>
<thead>
<tr>
<th>No. of children with abnormal values</th>
<th>Urinary NAG*</th>
<th>Urinary BMG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhanakorgan region (n = 189)</td>
<td>Kazalinsk region (n = 203)</td>
<td>Zhanakorgan region (n = 189)</td>
</tr>
<tr>
<td>Prevalence (%)</td>
<td>2.6</td>
<td>16</td>
</tr>
<tr>
<td>p value (χ² test with Yates’s correction)</td>
<td><0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Abnormal NAG: >1.5 U/mmol Cr; abnormal BMG: >5.94 μg/mmol Cr.

REFERENCES
Renal tubular dysfunction in children living in the Aral Sea Region

K Kaneko, M Chiba, M Hashizume, O Kunii, S Sasaki, T Shimoda, Y Yamashiro, W Caypil and D Dauletbaev

Arch Dis Child 2003 88: 966-968
doi: 10.1136/adc.88.11.966

Updated information and services can be found at:
http://adc.bmj.com/content/88/11/966

These include:

References
This article cites 12 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/88/11/966#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/