Recall bias, MMR, and autism

N Andrews, E Miller, B Taylor, R Lingam, A Simmons, J Stowe, P Waight

METHODS

While the data collected in the earlier study conducted in 1998 are unlikely to have been greatly influenced by the putative MMR-autism association, the data for the newly diagnosed cases in the study conducted in 2000 had the potential for parental recall bias concerning the age at onset of symptoms, particularly for those in whom regression was reported. The potential for this bias arises because details of symptom onset are usually recorded retrospectively at the time of autism diagnosis. In order to investigate whether this had occurred we compared RI estimates for children likely to have been diagnosed before and after the MMR-autism publicity. Since cases notes for children diagnosed up to 1998 (pre-hypothesis) could have been changed or updated subsequently, the data collected in 1998 for the five districts included in the 2000 study were used for the pre-hypothesis RI estimates. The study period for this cohort was from 1979 to the end of 1997. The post-hypothesis data set used information collected in the 2000 study and was restricted to those born from January 1995. This date was used because no child born from 1995 onwards had a diagnosis before 1997 and most had diagnoses between 1998 and 2000.

RESULTS

From the 1998 study, 86 cases with an age at regression from 0 to 50 months and 285 cases with an age at parental concern from 0 to 50 months were identified in the five districts. From the 2000 study in children born from January 1995, 26 cases had an age at regression from 0 to 50 months and 95 cases had an age at parental concern from 0 to 50 months. Table 1 shows the RI estimates for regression onset within 2, 4, 6, and 12 months of MMR for the two studies. The RI estimates in the 2000 study were greater than those in the 1998 study, although the confidence intervals were fairly wide and differences between estimates in the studies were not significant. None of the RI estimates in either study were significantly greater than one.

Table 2 shows the RI estimates for onset according to first parental concern within 2, 4, 6, and 12 months of MMR for the two studies. The RI estimates for the 2000 study were similar to those in the 1998 study. The <6 month analysis for the five districts analysed from the 1998 study showed a significantly raised RI, similar to that previously reported for eight districts in the earlier study.

DISCUSSION

The results of this study are consistent with the existence of parental recall bias when reporting the onset of regression in relation to MMR immunisation in children with autism. Although the direction of the bias is as expected, the number of cases in the 2000 study with regression and born since 1995 was small, and the differences compared with the 1998 study were not significant. No evidence of bias was seen for reported age at first parental concern, consistent with the emphasis of the MMR-autism hypothesis on the subset of children in whom parents report developmental regression. The raised RI

Abbreviations: MMR, measles, mumps, and rubella; RI, relative incidence
seen in the 1998 study in the <6 month period for first parental concern was not seen in the 2000 data. This suggests that the 1998 result was a chance finding because of the number of post-immunisation periods examined in the study.

The potential for bias needs to be considered in any study reliant on clinical histories obtained after a hypothesis has been publicised. This may be in the form of recall bias or biased reporting of cases fitting the hypothesis and may lead to false conclusions. Although the difference in RI estimates pre and post the hypothesis was not significant, this paper highlights the possibility that such a bias could affect future studies.

Acknowledgements
The 1998 study was funded by the Medicines Control Agency and the Department of Health. The 2000 study was funded by the Department of Health. We are very grateful to the paediatricians, child health computer staff, and their managers in the study districts for their help with these studies.

Contributions: N Andrews conducted the statistical analyses and wrote the paper; E Miller and B Taylor also wrote the paper and designed the study. R Lingam, A Simmons, and J Stowe collated case note data.

Authors’ affiliations
N Andrews, Statistics Unit, Public Health Laboratory Service, 61 Colindale Avenue, London NW9 5EQ, UK
E Miller, J Stowe, P Waight, Immunisation Division, Communicable Disease Surveillance Centre, Public Health Laboratory Service
B Taylor, R Lingam, A Simmons, Centre for Community Child Health, Royal Free and University College Medical School, Royal Free Campus, University College London, London NW3 2PF, UK

Correspondence to: Dr E Miller, Immunisation Division, Communicable Disease Surveillance Centre, Public Health Laboratory Service, 61 Colindale Avenue, London NW9 5EQ, UK; emiller@phls.org.uk

Accepted 5 August 2002

References
Recall bias, MMR, and autism

N Andrews, E Miller, B Taylor, R Lingam, A Simmons, J Stowe and P Waight

Arch Dis Child 2002 87: 493-494
doi: 10.1136/adc.87.6.493

Updated information and services can be found at:
http://adc.bmj.com/content/87/6/493

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/87/6/493#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Autism (133)
- Child and adolescent psychiatry (paediatrics) (683)
- Pervasive developmental disorder (138)
- Dentistry and oral medicine (147)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/