Controlled study of respiratory viruses and wheezing

P C Parkin, C Y Taylor, M Petric, S Schuh, M Goldbach, M Ipp

Wheezing in early childhood is common, occurring in approximately 50% of children before the age of 6 years. Understanding the role of respiratory viruses in triggering acute wheezing in children has been compromised by the lack of comparison groups in previous studies. The objective of this study was to investigate the association (using a control group) of two common viruses— influenza virus and respiratory syncytial virus (RSV)—with acute wheezing among children, aged 1–7 years, with a past history of wheezing.

METHODS

Children, aged 1–7 years, with two or more previous wheezing episodes, were enrolled from a paediatric community practice and an emergency department during two consecutive winters (1997/1998, 1998/1999) into this concurrent case-control study. Cases had previous wheezing and current symptoms of an upper respiratory infection and acute wheezing (clinical score of at least 1). Controls had previous wheezing and current symptoms of an upper respiratory tract infection, without acute wheezing (clinical score of 0) at the time of enrolment or within the week following enrolment. Children were excluded if they had received immunisation for influenza in the year of enrolment. The study was approved by the Hospital for Sick Children Research Ethics Board, and informed parental consent was obtained.

Baseline characteristics were collected and wheezing severity was graded using a clinical score (minimum to maximum range: 0–10). Nasopharyngeal swab specimens were collected and examined for influenza viruses A and B and RSV by immunofluorescence microscopy (antibodies from Light Diagnostics, Temecula, CA) and cell culture (RMK cells: Viromed Diagnostics, Minneapolis, MN; and MDCK cells: American Type Culture Collection, Rockwood, MD).

The odds ratio and 95% confidence interval were determined for influenza virus and RSV in children with acute wheezing (cases) relative to children with upper respiratory symptoms alone (controls). Separate analyses were undertaken for community cases versus controls, and all cases (community and emergency cases) versus controls.

RESULTS

Table 1 shows baseline characteristics. Table 2 shows the association between acute episodes of wheezing and viral infection. For influenza virus, the odds ratio indicates that infection is not associated with acute wheezing. The adjusted odds ratio (all cases versus controls) for the risk of acute wheezing in those with influenza was 0.52 (95% confidence interval, 0.27 to 1.03). For RSV, the odds ratio indicates that infection is associated with a threefold increase in the risk of acute wheezing.

Children with influenza virus (n = 43) and RSV (n = 58) were compared. Children with influenza virus were older (median age 3.6 years v 2.4 years, p = 0.002), had a lower...
median clinical score (0 v 2, p < 0.001), were more likely to be recruited from the community practice (87% v 59%, p = 0.003), and were less likely to be wheezing acutely (47% v 81%, p = 0.0003), compared to children with RSV. There were no differences in sex, history of smoke exposure, family history of asthma, and history of atopy.

DISCUSSION
When cases and controls were analysed for the viral aetiology of their respiratory illness, cases were three times as likely to be infected with RSV, but almost half as likely to be infected with influenza virus compared with controls. This finding existed in both the community and emergency department setting.

An extensive body of literature, summarised by Pattemore and colleagues, has found that influenza virus and RSV are commonly identified in wheezing illnesses and asthma exacerbations occurring in childhood. The interpretation of these studies is compromised in that control groups were not included for comparison. The unique contribution of our study was the inclusion of a control group, to allow for an estimate of the strength of the association.

Our study may be limited by the case–control study design. Although a prospective cohort study would be appropriate, this would be an intensive and invasive process, requiring participants to undergo repeated nasopharyngeal swabs, both when symptomatic (wheezing) and asymptomatic (not wheezing). Therefore, we designed a case–control study, in which controls were chosen to be free of wheezing (outcome) but comparable to cases with respect to risk of exposure. Thus, controls were selected from those individuals seeking care for broadly defined symptoms of an upper respiratory infection. A strength of the design was the inclusion of both community and emergency department controls. Furthermore, determination of outcome (wheezing) and exposure (virus infection) was conducted concurrently.

An unexpected finding was the trend of the association between influenza virus and wheezing, suggesting that infection might actually be associated with a reduced risk of wheezing (adjusted odds ratio 0.52, 95% confidence interval, 0.27 to 1.03). While this may have been a chance finding, it contrasts with previous studies, which have found a high influenza virus related morbidity in children with recurrent wheezing and asthma.

New hypotheses have emerged regarding the role of viruses in promoting or preventing the development of persistent wheezing and asthma. Exposure to older children at home, children at day care, and repeated viral infections (other than lower respiratory tract infections) are thought to be protective.

Understanding the role of respiratory viruses in triggering acute wheezing, and in the long term development or prevention of recurrent wheezing, will be important when considering strategies such as immunisation and antiviral therapy. In this context, we conclude that in our study the role of influenza virus in triggering acute wheezing in young susceptible children less than 7 years of age was weak, while the role of RSV in these children was strong.

.......................

Authors’ affiliations
P C Parkin, C Y Taylor, M Goldbach, M Ipp, Division of Paediatrics, Medicine, and the Paediatric Outcomes Research Team, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
S Schuh, Division of Emergency Medicine, Department of Paediatrics, University of Toronto
M Petric, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto
Correspondence to: Dr P C Parkin, Head, Division of Paediatric Medicine, Associate Professor, Department of Paediatrics, University of Toronto, Faculty of Medicine, Ontario, Canada; patricia.parkin@sickkids.ca
Accepted 11 May 2002

REFERENCES
Controlled study of respiratory viruses and wheezing

P C Parkin, C Y Taylor, M Petric, S Schuh, M Goldbach and M Ipp

Arch Dis Child 2002 87: 221-222
doi: 10.1136/adc.87.3.221

Updated information and services can be found at:
http://adc.bmj.com/content/87/3/221

These include:

References
This article cites 6 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/87/3/221#BBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/87/5/453.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections

- Influenza (73)
- TB and other respiratory infections (643)
- Child health (3922)
- Epidemiologic studies (1818)
- Clinical diagnostic tests (1133)
- Immunology (including allergy) (2018)
- Vaccination / immunisation (334)
- Asthma (369)
- Journalology (262)
- Research and publication ethics (120)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
If you have a burning desire to respond to a paper published in ADC or FEw, why not make use of our “rapid response” option? Log on to our website (www.archdischild.com) and find the paper that interests you, click on “full text” and send your response by email by clicking on “submit a response”.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage.

The editors will decide, as before, whether to also publish it in a future paper issue.

Problems with scoring bruises

We write to draw attention to two problems with the recent study on a scoring system for bruising by Dunstan et al.

Firstly, the authors did not publish confidence intervals for the likelihood ratios (LRs) derived from different score threshold values (table 3), thereby not allowing readers to judge whether the LRs are statistically—let alone clinically—significant.

Secondly, the authors neglect the phenomenon of spectrum bias. This is a well described feature of many tests, whereby sensitivity and specificity (and hence derived LRs) of a test vary with disease severity or prevalence. Examples of spectrum bias have been described with several tests including exercise electrocardiography, Multivariate analysis. Am J Med 1984;74:64–71.

Does cefotaxime eradicate nasopharyngeal carriage of N meningitidis

We enrolled 43 children admitted with an unequivocal clinical diagnosis of meningococcal sepsis into a study to determine whether cefotaxime eradicated nasopharyngeal carriage of N meningitidis. In 28 cases (70%) the diagnosis was confirmed by positive culture from blood, nose, throat, or skin scraping, detection of meningococcal DNA in blood by polymerase chain reaction, or convalescent meningococcal serology. All children were treated with intravenous cefotaxime for seven days. Nasopharyngeal swabs were both positive for meningococci in 42 of these children, and all children had swabs repeated every day until there were at least two negative swabs.

On admission, the throat and nasopharyngeal swabs were both positive for meningococcus in two patients; in another two patients, the nasopharyngeal swab was positive while the throat swab was negative. In three patients the swabs became negative after 24 hours of treatment, and in one child it became negative after 48 hours. In these children and others in whom the swabs were negative from the day of admission, subsequent swabs remained negative.

Compared to a previous study that reported a nasopharyngeal carriage rate of 50% on admission and showed that the yield of meningococci in throat swabs was unaffected by prior administration of penicillin, the yield from throat and nose swabs in this study (9.5%) was poor. This may reflect the fact that in practice many of these swabs were taken after the child had been given the first dose of cefotaxime. The study suggests that cefotaxime, like ceftriaxone, is effective in eradicating nasopharyngeal carriage, and in children treated with cefotaxime, additional prophylaxis with rifampicin is not necessary. However, no recommendations for the use of cefotaxime alone can emanate from these findings as the sample size was small and study design did not compare cefotaxime with gold standard treatment (either rifampicin or ceftriaxone). We are keen to coordinate a follow up multicentre study this winter involving paediatric intensive care units across the country to compare the efficacy of ceftriaxone with cefotaxime on eradication of meningococcal carriage. Interested units are kindly requested to contact us.

References

5 Problems with scoring bruises

We write to draw attention to two problems with the recent study on a scoring system for bruising by Dunstan et al.

Firstly, the authors did not publish confidence intervals for the likelihood ratios (LRs) derived from different score threshold values (table 3), thereby not allowing readers to judge whether the LRs are statistically—let alone clinically—significant.

Secondly, the authors neglect the phenomenon of spectrum bias. This is a well described feature of many tests, whereby sensitivity and specificity (and hence derived LRs) of a test vary with disease severity or prevalence. Examples of spectrum bias have been described with several tests including exercise electrocardiography, Multivariate analysis. Am J Med 1984;74:64–71.

Does cefotaxime eradicate nasopharyngeal carriage of N meningitidis

We enrolled 43 children admitted with an unequivocal clinical diagnosis of meningococcal sepsis into a study to determine whether cefotaxime eradicated nasopharyngeal carriage of N meningitidis. In 28 cases (70%) the diagnosis was confirmed by positive culture from blood, nose, throat, or skin scraping, detection of meningococcal DNA in blood by polymerase chain reaction, or convalescent meningococcal serology. All children were treated with intravenous cefotaxime for seven days. Nasopharyngeal swabs were both positive for meningococci in 42 of these children, and all children had swabs repeated every day until there were at least two negative swabs.

On admission, the throat and nasopharyngeal swabs were both positive for meningococcus in two patients; in another two patients, the nasopharyngeal swab was positive while the throat swab was negative. In three patients the swabs became negative after 24 hours of treatment, and in one child it became negative after 48 hours. In these children and others in whom the swabs were negative from the day of admission, subsequent swabs remained negative.

Compared to a previous study that reported a nasopharyngeal carriage rate of 50% on admission and showed that the yield of meningococci in throat swabs was unaffected by prior administration of penicillin, the yield from throat and nose swabs in this study (9.5%) was poor. This may reflect the fact that in practice many of these swabs were taken after the child had been given the first dose of cefotaxime. The study suggests that cefotaxime, like ceftriaxone, is effective in eradicating nasopharyngeal carriage, and in children treated with cefotaxime, additional prophylaxis with rifampicin is not necessary. However, no recommendations for the use of cefotaxime alone can emanate from these findings as the sample size was small and study design did not compare cefotaxime with gold standard treatment (either rifampicin or ceftriaxone). We are keen to coordinate a follow up multicentre study this winter involving paediatric intensive care units across the country to compare the efficacy of ceftriaxone with cefotaxime on eradication of meningococcal carriage. Interested units are kindly requested to contact us.

References

Pneumocystis carinii pneumonia in an infant with transient hypogammaglobulinemia of infancy

Transient hypogammaglobulinemia of infancy (THI) is characterised by prolongation of the physiological decline in serum immunoglobulin concentrations seen in the first six months of life. The incidence reported from an Australian paediatric centre was estimated as 23 per 10^5 live births. It has been reported that THI does not usually predispose to significant infection.

A male infant born at term to non-consanguinous parents presented at 3.5 months with cough, tachypnoea (70 breaths/minute), wheeze, croppitations, and hypoxia. A chest X-ray and bronchoalveolar lavage showed patchy interstitial infiltration and patchy opacification in the hilar regions and upper lobes. Pneumocystis carinii was identified in bronchoalveolar lavage by toluidine blue staining. The immunological findings of this child were consistent with those of THI with an IgG level less than the fifth centile and absent serum IgA which resolved with age (IgG at presentation 3.9 g/l (normal: 1.39–8.04); at 5 months 2.23 (1.39–8.04); at 10 months 1.77 (2.02–11.76); at 17 months 7.51 (2.71–13.78); IgA at 5 months <0.07 g/l (normal: 0.14–0.69); at 13 months 0.14 (0.17–1.34)) and evidence of specific antibody production to tetanus, diphtheria, and Haemophilus influenzae type b following immunisation. THI cell numbers (total lymphocytes 6.2 x 10^9, CD3 68%, CD4 56%, CD8 15%) and phytohaemagglutinin induced proliferation were normal. At 3 years the child was well with normal IgG, IgA, and IgM levels.

Pneumocystis carinii pneumonia presenting in the first three months of life is an infection typically seen in patients with significant T cell immunodeficiencies and X linked hyper IgM. These were excluded by normal T cell numbers and function and by normal CD40 ligand expression and mutation analysis. There are reports of Pneumocystis carinii pneumonia in immunocompetent infants and agammaglobulinemia.

This is the first description of Pneumocystis carinii pneumonia in a patient with THI.

J M Smart, A S Kemp
Department of Immunology, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia; kempa@cryptic.rch.unimelb.edu.au

D S Armstrong
Department of Respiratory Medicine, Royal Children’s Hospital

References

www.archdischild.com
Procalcitonin as a prognostic marker in children with meningococcal septic shock

Carrol and coworkers confirm the findings from Karabucoglu et al who reported that procalcitonin (PCT) was higher in children with severe meningococcemia (fever, peripheral purpura, and hypotension) than in children with systemic meningococcal infection without shock (291.29 ± 167 v 19.7 ± 23 ng/ml; p<0.001). Unfortunately, information is lacking in the report of Carrol et al, namely: a clear definition of severe MCD (defined in their paper as a Glasgow Meningococcal Septicaemia Prognostic Score ≥8) and median PCT value (median: 19; Q1–Q3: 4–21 ng/ml). We compared in term of prediction of outcome between PCT level and generic or specific severity scoring systems. We report that admission PCT level is an accurate predictor of mortality in the subgroup of children with meningococcal septic shock (MSS). We prospectively investigated 35 children (median age: 16 months; Q1–Q3: 9–45) with MSS (defined as ecchymotic or necrotic purpura with shock, needling fluid expansion (median for the first 24 hrs: 90 ml/kg; Q1–Q3: 48–120) and catecholamine infusion) admitted to our PICU between July 1999 and May 2002. We estimated the accuracy in predicting death of PCT, C reactive protein (CRP: nephelometry) on admission, and the Pediatric Risk of Mortality (PRISM) score within 24 hrs of admission or at the time of death. Sensitivity, specificity, positive and negative predictive values, and percentage of well classified children were calculated at the following cut-off values: PCT >130 ng/ml (the best cutoff value of the PCT level was determined by χ² optimisation (Fisher’s test; p=0.0004)), CRP <100 mg/l, PRISM value >20 and PRISM probability of death >50%. For each severity index, we calculated the area under the ROC curve (AUC) and the standard error (SE) and determined the significance of comparisons.

Eleven of 35 children died (31%); predicted mortality with the PRISM score was 15.6 (standardised mortality ratio: 0.71; 95% confidence interval: 0.35–1.26). The median (Q1–Q3) PCT and CRP levels and PRISM value and probability of death were the following: survivors v nonsurvivors PCT 73 (15–210) v 277 (208–606) mg/l (p<0.001); CRP 92 (44–160) v 277 (41–109) mg/l (p=0.025); PRISM value 17 (8–22) v 33 (26–37) (p<0.01); PRISM probability 19 (4–42) v 88 (63–95) % (p<0.01).

Performance characteristics and AUC SE of PCT, CRP and PRISM score are given in the table and the figure.

Table 1: Performance characteristics of PCT, CRP, and PRISM score in 35 children with MSS

<table>
<thead>
<tr>
<th>Severity index (%)</th>
<th>PCT</th>
<th>CRP</th>
<th>PRISM value</th>
<th>PRISM probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100</td>
<td>64</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>Specificity</td>
<td>63</td>
<td>46</td>
<td>63</td>
<td>83</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>50</td>
<td>35</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>100</td>
<td>46</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Well classified</td>
<td>74</td>
<td>51</td>
<td>74</td>
<td>86</td>
</tr>
</tbody>
</table>

Figure 1: ROC curves (AUC SE) for PCT, CRP, and PRISM score in 35 children with MSS (PCT v PRISM value, p=0.45; PCT v PRISM probability, p=0.31; PCT v CRP, p=0.006; CRP v PRISM value, p<0.01; CRP v PRISM probability, p<0.1). In our study, PCT on admission was as accurate as the PRISM probability of death calculated within 24 hrs of admission or at the time of death, and more accurate than the CRP level in classifying survivors and nonsurvivors of MSS. These results accord with those of Hatherill et al who observed, in 37 children with MSS, that admission PCT level (values not indicated) was higher in nonsurvivors (11%) than in survivors (p=0.04) and related to the severity of organ failure (p=0.02); however, in the whole group of children with septic shock whatever the causative organism, admission PCT functioned worse than the PRISM score (AUC 0.73 (0.59–0.88) v 0.83 (0.71–0.93); statistical comparison not performed). The PRISM score is accepted in PICUs worldwide and has been reported to accurately predict outcome of meningococcal disease.1

Incidence of severe and fatal reactions to foods

Although the article by Macdougall et al regarding the incidence of severe and fatal reactions to food would be seem to be reassuring, we would like to express some concerns and raise some questions about the data presented. The first question is whether the ascertainment of cases is really as complete as the authors suggest. We acknowledge that the UK medical system may allow better reporting and access to mortality data than that of the US. However, the records acquired as described seem to represent the same underreporting issues as those in the US. Is it really unlikely that the BPSU misses a significant number of cases? Based upon a well characterised population in Olmstead county Minnesota and extrapolating the data to a US population of 280 million, it may be estimated that there are 200 deaths from anaphylaxis reactions to food each year.1

Table references: 1

higher number of cases were reported from rural regions as compared to metropolitan areas strongly suggesting either misdiagnosis or inaccurate recording of cases in the emergency department log of busy hospitals. A second concern is the reporting of cases only up to age 15. In the paper mentioned above, of 32 fatalities 10 occurred in young-sters up to age 15. An additional 10 occurred in adolescents aged 16 to 19. Why did MacDougall et al not include all adolescents? A third question must always be raised when fatal food anaphylaxis is studied. Is it not possible that cases of fatal asthma were actually initiated by unidentified allergic reactions to food? All authors in this field are likely to agree that the ultimate cause of death may be irreversible airway obstruction, and all would agree that poorly controlled asthma increases the risk of fatal anaphylactic reac-
tions to food, but we would suggest that the trigger responsible for individual asthma fatalities is not always determined. What about fatalities that never reach the emer-
gency department? Are these under-reported on death certificates as asthma fatalities? Indi-
viduals that die at home and are classified as asthma deaths are unlikely to be further investigated, whether the US or the UK. Fourthly, the authors’ definition of severity seems incomplete. Individuals with severe food reactions who self administer epine-
phrine often do not go to hospital, are less likely to have reactions that require hospitaliza-
tion or cause death, and often they do not report these reactions to their physicians unless specifically queried. Some survive the reaction without treatment, become convinced that they had a food allergy, and never tell their physician. We could argue about the possible progression of these epi-
sodes to near fatal or fatal reactions, but the point we wish to make is that they are often under reported. The fifth concern is the safe administration of epinephrine. We disa-
gree about the risk to children of the administration of a single dose of epinephrine as opposed to withholding that dose. We have no disagreement about aggressive treatment of asthma concurrently, and in fact we think that point should be emphasised. However families reading this commentary may become more fearful than they currently are, about admin-
istering epinephrine. We know that epine-
phrine is not always life saving even when administered in a timely fashion, however withholding it surely must increase the risk of death. Overdose certainly may occur, but it seems more likely that an overdose would be administered by medically trained personnel than by parents. The over prescription of epinephrine is a debatable issue, however it seems a small price to pay, with a low risk, in order to save even one young life. Finally, we are very concerned that families will interpret this paper to mean that death from food allergy is very unlikely, and therefore may relax their vigilance. If families of younger children become less con-
cerned when their children become adoles-
cents it may be difficult to institute a good prehospital education program. This is contrary to the opposite of the goal of education programs in the US (The Food Allergy and Anaphylaxis Network, www.foodallergy.org) and UK (The Anaphylaxis Campaign) aimed at making individ-
uals with food allergy and the general population more aware of the problem and the potential for mortality. It is truly unfortu-
nate that we cannot accurately identify all of the individuals who die during allergic reac-
tions to food and use this information to do a better job of preventing these tragedies. We must continue our campaigns of education of medical professionals and the public, and we must be certain that emergency treatment is available when and where it is needed.

J O’B Hourihan
Wellcome Trust Clinical Research Facility,
Southampton University Hospitals NHS Trust,
Southampton, UK

D Reading
The Anaphylaxis Campaign, PO Box 275,
Farnborough, Hampshire, UK

P Smith
Brisbane, Australia

G Lock
St Mary’s Hospital, London, UK

D Hill
Department of Allergy, Children’s Allergy Centre,
Royal Children’s Hospital, Parkville, VIC 3052,
Australia

A Munoz-Furlong
The Food Allergy & Anaphylaxis Network,
10400 Eaton Place, Fairfax, VA 22030, USA

S A Bock
National Jewish Medical and Research Center,
Department of Paediatrics, University of Colorado Health Sciences Center, Denver, CO, USA

Correspondence to Dr Bock; Bockdoc@aol.com

References

Authors’ reply
We thank Bock et al for their interest in our article. We respect their views on the interpretation of the data but it is of course for each reader to come to their own opinion on these. We would like to respond to their com-
ments on the accuracy and valididity of our data.

Did our paper under ascertain deaths? Bock et al base their concerns on our methods of case ascertainment and on comparison with another study. We cannot be certain about this but as the text indicated we used many sources and spoke to many experts in the field. We agree we did not search local newspapers but this would have been almost impossible as few were on CD-ROM in the 1990s. As mentioned, we did search national newspapers and all cases we came across were already known through one of our other sources. Finally, since publication, no-one has told us of a case we appear to have missed. We specifically studied children up to 15 years because this is the group we were inter-
ested in. Many recommendations on risks to children are based on inferences from data covering all ages and we wanted to bring a proper paediatric perspective. Indeed the interpretation Bock et al give to the paper they cite is grossly misleading. They suggest extrapolation to a US population would lead to 200 deaths from food each year yet the paper, in which there is only one death (occurring during exercise), covers all ages and reactions to all allergens, not just food.

The issue of whether asthma deaths may have been precipitated by food allergy is an important question which we addressed “If a child’s symptoms are only asthmatic and no allergen is suspected, then there is no means for attributing such reactions to food or for knowing if a causal link exists”. Furthermore, such deaths will never have been reported in surveys of food allergy in other countries or in other age groups. No group has been able to address this question satisfactorily and it is a key area for further research.

We are not sure we agree that children, who have self administered epinephrine, often do not go to hospital. However we do not know the proportion and said as much, excluding this group from our definition of severity.

Finally we agree that education of profes-
ionals and the public should continue based on the best data available. This must include those parents whose children are truly at high risk as well as those many parents that think any immediate hypersensitivity reaction to food means their child is at high risk of an allergic death; when in reality the risk, in the absence of asthma, seems very small. Differ-
ent parents will come to different views about how to proceed faced by a severe but very small risk, just as we all do in many aspects of our lives.

A Colver
Northumbria Health Care Trust and University of Newcastle upon Tyne, Donald Cawte Court, 13 Walker Terrace, Gateshead NE8 1EB, UK

C MacDougall
Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE, UK

A Cant
Paediatric Immunology and Infectious Diseases Unit, Newcastle General Hospital, UK

Correspondence to Dr Colver; allan.colver@ncl.ac.uk

Reference

Physiologic management of DKA

Inward and Chambers provide a provocative description and discussion of the continuing confusion regarding the issues surrounding rehydration and treatment of the pediatric patient with diabetic ketoacidosis (DKA). They review some of the key issues that link fluid therapy to complications from brain swelling, and question the appropriateness of administering a volume of fluid calculated by “maintenance plus deficit”, calling for a second revolution in the management of DKA. In the accompanying commentary, Edge makes sev-
eral statements concerning fluid therapy in DKA, including that “DKA is associated with severe fluid losses”, that “any guidelines for fluid and electrolyte management must be simple to calculate”, that administration of base is a risk factor for additional complica-
tions, and that despite published data and “changes in protocols”, there is no evidence that the “incidence of cerebral oedema has changed over the past 20 years”. It is our opinion that the problem in the rehydration of the pediatric patient with DKA

PostScript

www.archdischild.com

451
does not lie in assigning a maintenance fluid allotment. Rather, the source of error lies largely with failure to accurately estimate the volume of deficit and the tendency to automatically assume a severe degree of dehydration. From our experience with over 450 consecutive episodes of moderate and severe DKA, and our weight gain data, severe DKA (ie severe ketoacidaemia) does not necessarily mean severe dehydration; the converse is also true.15 16 The degree of dehydration ranges from negligible (<1 %) to extreme (>20 %). Severe ketoacidaemia, however, does cause vasoconstriction which may be manifested peripherally by cool, mottled skin, and Kussmaul breathing which leads to venous dryness and mucousa. The striking appearance of a parched mouth and the presence of cool, even mottled skin without a critical assessment of vital signs and examination of distal (foot) pulses often results in an erroneous impression of shock and “severe dehydration.” A method for estimation of the volume of deficit was described in 199017 and we continue to use this as the gold standard. Successful therapy requires not only a prompt replacement (evenly over 48 hours) but an accurate estimation of the volume of deficit along with careful monitoring of the clinical and biochemical response. If the deficit is assumed to be 10–15% but is actually only 3%, that patient will receive excess water independent of the more gradual timeframe and independent of the duration of the infusion. Guidelines that have proposed “safe” limits to fluid volumes administered such as 4 litres/m2/day or 50 kg body weight/4 hours violate the concept of the individualised assessment of the degree of dehydration. Invasively and severely dehydrated children; the problem is compounded when actual body weight is used instead of ideal body weight in fluid allotment. On the other hand, certain patients, particularly those with complicating illness—for example, septic shock, pancreatitis—may require more than 20 ml/kg of fluid resuscitation in the first treatment hour and more than 50 ml/kg in the first four hours. Setting arbitrary fluid volume limits per hour or per day endanger particularly those patients at the mild and severe ends of the dehydration spectrum. Although the risk would be greater with hypertonic fluid, overhydration occurs readily with isotonic fluid as well when water requirements are overestimated.

DKA represents the effects of a complex disruption of normal metabolism, which leads to metabolic death if left untreated. Shock (decreased peripheral pulses, with or without hypotension), if present, should be corrected rapidly. Insulin should be given preferably by continuous, low dose, intravenous infusion, as soon as possible to begin correction of ketoacidemia/ketoacidosi. Regardless of the serum concentration of glucose, insulin is required to treat the hepatic fatty acids, and carnitine cycle leading to ketoacid formation. A delay in insulin administration only serves to enhance and prolong ketoacidemia, thereby extending the period of time before treatment. Successful therapy requires not only a prompt replacement but an accurate estimation of the volume of deficit along with a large volume of deficit, planned rehydration in less than 48 hours with either 0.45% or 0.9% NaCl, with or without urinary output replacement. In a retrospective portion of our study in 199017 we compared these same therapies and found that no form of traditional therapy minimised the risk of brain herniation during treatment. Comments regarding the administration of potassium base should be better defined. Rapid administration of “pushes” of hypertonic sodium bicarbonate should not be given. On the other hand, there is no evidence that administration of physiologic concentrations of base in the rehydration fluid results in either harmful or undesirable. In our experience, this practice mitigates the development of hyperchloremic acidosis during treatment.

As ours is a referral centre, most of our patients have had therapy initiated in outlying hospitals, sometimes in keeping with our recommended approach, and sometimes with our recommendations instituted only after initial therapy has failed. In this setting, we have managed certain patients with severe DKA who received resuscitation fluids in excess of what their physical examination and laboratory data would dictate. It is not unusual for such patients to require as little as a typical maintenance allotment (without a deficit replacement component) for the remainder of therapy; some patients required fluid restriction to as little as two thirds the usual maintenance volume.

Our approach has been criticised because of the incidence of mannitol administration in our series. In our mannitol recipients, several of whom did not receive their initial manage-ment by us, there was no central nervous system morbidity or mortality. In another large series of patients there was a 50% failure rate of mannitol to reverse a deteriorating neurologic status, even when mannitol was given before respiratory arrest, with a near 100% failure rate when mannitol was given after respiratory arrest.13 It is possible that not all of our mannitol recipients actually had raised intracranial pressure. We believe, however, that the key to our good outcome is that the fluid and electrolyte therapy on which mannitol is superimposed is relevant to its success. It is erroneous to claim the 100% success rate among our mannitol recipients would be reproducible in the setting of a therapy that violates the fundamental principles of rehydrating the hypertonic state of DKA. Drs Inward and Chambers ask “do we have it right yet?” and convey concern that certain recommendations do not, as of yet, “have it right”. We agree.

Our work regarding the management of the pediatric patient in moderate to severe DKA has spanned 14 years14 and nearly 500 consecutive prospectively managed episodes. We remain available to participate in any endeavour to continue to improve the care of the paediatric patient in DKA.

G D Harris, I Fiordalisi
Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA

Correspondence to Dr Harris; harrisgl@mail.ecu.edu

References

The Position Statement on Injection Technique

The Position Statement on Injection Technique (March 2002, Royal College of Paediatricians and Child Health) discusses needle size and length for childhood immunisation. It concludes that there would seem to be insufficient evidence to advise any recommendation to change current practice in the use of 25 gauge needles. As the authors of a research study that aimed to provide some evidence base for immunisation practice we would like to respond to this.13

Our study of 119 babies aged 4 months revealed that administering their third dose of DPT/Hib vaccine found that significantly less redness and swelling occurred when infants were immunised using the longer 23 gauge 25mm (blue hub) needle rather than the shorter 25 gauge 18mm (orange hub) needle was used. The magnitude of the reduction was substantial. The position statement is correct to note that in our study the difference in tenderness did not reach statistical significance. However we believe our study still

www.archdischild.com
justifies a recommendation for the use of the longer needle for immunisation in 4 month old infants.

We believe the non-significant difference in tenderness with the different needles must be interpreted with caution, and should not be taken as a rationale for ignoring the significant benefits in terms of reduced redness and swelling. Tenderness was in fact reduced by the same relative amount as redness, but as tenderness occurred less frequently, the results were not formally statistically significant. We have used Bayesian analyses (using an “uninformative” prior distribution) to formally compute the chance that there is a clinically significant reduction (of at least 25% as specified in the protocol) in tenderness between the long and short needles. At six hours the probability of a clinically significant decrease in tenderness with the longer needle is 73%, whereas the chance of a clinically significant increase is only 2%. The evidence is therefore clearly in the direction of the longer needle causing less harm.

We recognise the need for further evidence on which to base immunisation practice at each of the infant immunisation ages. To this end, we are now conducting a randomised controlled trial involving over 600 infants aimed at providing a definitive answer. In the meantime, we reiterate our recommendation to practitioners to use the longer needle for immunising 4 month old infants.

L Diggle
Oxford Vaccine Group, Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK

J Deeks
Centre for Statistics in Medicine, Institute of Health Sciences, University of Oxford, Oxford OX3 7LF, UK

Correspondence to: L Diggle; linda.diggle@paediatrics.ox.ac.uk

Reference