C difficile induced pneumatisos intestinalis in a neutropenic child

A 4 year old boy presented with a 24 hour history of fever, cramping central abdominal pain with distension, and bloody diarrhoeal stools. He had developed acute myeloblastic leukaemia at the age of 1. He eventually required a matched unrelated graft which engrafted successfully but acidosis and portal gas are associated with a poor outcome.

Temperature was 38.5°C, pulse 150/min; he had abdominal distension and tenderness but no ascites.

An abdominal film (fig 1) revealed dilatation of the colon with gaseous linear tramlining of the bowel wall consistent with pneumatisos intestinalis (PI). Stools were positive for Clostridium difficile toxin A. PI resolved with bowel rest, intravenous fluids, meropenem, and metronidazole but he later died of bowel rest, intravenous fluids, meropenem, and metronidazole but he later died of bowel rest, intravenous fluids, meropenem, and metronidazole but he later died of bowel rest, intravenous fluids, meropenem, and metronidazole but he later died of bowel rest, intravenous fluids, meropenem, and PI. PI is described in children in Crohn’s disease, ulcerative colitis, leukaemia, trauma, HIV, and GVHD after BMT. C difficile, pseudomembranous colitis, and PI are reported in an immunocompetent adult patient.

Conservative management is usually successful but acidosis and portal gas are associated with a poor outcome.

P M Gillett
R K Russell
D C Wilson

Department of Gastroenterology and Nutrition, Royal Hospital for Sick Children, Science Road, Edinburgh EH9 1LF, Scotland, UK
peter.gillett@luht.scot.nhs.uk

A E Thomas
Department of Haematology, Royal Hospital for Sick Children

Figure 1 Abdominal film showing dilatation of the colon and PI.
C difficile induced pneumatosis intestinalis in a neutropenic child

P M Gillett, R K Russell, D C Wilson and A E Thomas

Arch Dis Child 2002 87: 85
doi: 10.1136/adc.87.1.85

Updated information and services can be found at:
http://adc.bmj.com/content/87/1/85.1

These include:

Supplementary Material
Supplementary material can be found at:
http://adc.bmj.com/content/suppl/2002/06/21/87.1.85.DC1

References
This article cites 8 articles, 1 of which you can access for free at:
http://adc.bmj.com/content/87/1/85.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/87/2/171.2.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Problems involved with the use of comforters

While I share many of the concerns expressed by Gill in his diatribe on dummies there are a number of differences: 1. Gill seems to imply that dummies require amplification or correction. The first patent on the India rubber nipple resembling the present day dummy was recorded in 1845 and was described in use in its present form in London in 1857. Unfortunately by the time the practice of dipping the dummy in a variety of sweetening agents to make it a more effective pacifier had become established and this habit was noted to be associated with the early onset of dental caries. No doubt the loss of primary incisors mentioned by Gill is due to their destruction by rampant dental caries associated with the persistent use of sweetened pacifiers and their subsequent extraction due to spreading infection, pain, and loss of sleep. The association of dummy sucking with malocclusion is more complex than stated. While there is a general agreement on the effect of prolonged dummy sucking producing malocclusions in the primary dentition, these abnormalities are mainly self corrective on cessation of the habit which is usually before 5 years of age. 

G B Winter
Emeritus Professor of Children’s Dentistry, 1 Hanfield Close, Elsene, Herts WD6 3JD, UK

References
1 Gill D. A diatribe on dummies. Arch Dis Child 2002; 87:222

Cataplexy in the Prader–Willi syndrome

We report cataplexy, sudden atomic episodes provoked by emotion, in three patients with Prader–Willi syndrome (PWS) and suggest that cataplexy may be relatively common in this condition. Detailed questioning of the mother of an 18 year old woman who had PWS elicited a history of recurrent attacks, apparently induced by laughter, with sudden loss of power in all the patient’s limbs. If standing, she would slump to the floor but recover completely after a few seconds. She had no history of the sleep paralysis or hypnagogic hallucinations and there was no family history of cataplexy, narcolepsy, or epilepsy. Her EEG was unremarkable. Episodes of cataplexy and of narcolepsy, despite excellent weight control, have been reported by two other patients with PWS who attend this hospital, an 8 year old girl and a 10 year old boy. Only one of the three patients possesses the HLA DR15 (DR2) DQB1*0602 haplotype that is strongly associated with the narcolepsy–cataplexy syndrome.

Cataplexy is usually precipitated by emotion provoking laughter, anger, or joy. The affected individual often falls to the ground without losing consciousness and the phenomenon is often mistaken for an epileptic or cardiac event. It can occur in isolation as a predominantly inherited trait or in association with a number of other conditions (table 1). The association between PWS and cataplexy, though described previously, is not widely recognised. Suspected episodes of cataplexy have been reported in eight of 35, four of 25, and three of 17 patients with PWS. However, cataplectic manifestations are often “difficult to prove”, requiring a detailed history that is perhaps seldom available or elicited. We suggest that cataplexy may be relatively common in PWS and enquiries regarding its signs should always be made, especially in any patient with a past history of paroxysmal events.

E S Tobias, J L Tolmie
Duncan Guthrie Institute of Medical Genetics, Yorkhill Hospitals, Glasgow G3 8SJ, UK; gbev55@udcf.gla.ac.uk

J B P Stephenson
Fraser of Allander Neurosciences Centre, Royal Hospital for Sick Children, Yorkhill, Glasgow G3 8SJ, UK

References

Kawasaki disease following meningoococal septicaemia

We report a case of Kawasaki disease (KD) following meningoococal septicaemia which we believe has not been described before. A 14 month old boy presented to his local hospital with a four day history of being unwell, fever, and blanching maculopapular rash. Meningoococal septicaemia was diagnosed clinically and the boy was managed with fluid support and intravenous antibiotics. His recovery was complicated by developing respiratory syncytial virus positive bronchiolitis and secondary surgical emphysema. Polymerase chain reaction was positive for group B meningococcus on day 3. Blood and urine cultures were negative. He continued to spike high temperatures with pleomorphic erythematous rash, non-purulent conjunctivitis, red enlarged lips, red gums, red inflamed tongue, and axillary lymphadenopathy >1.5 cm. A clinical diagnosis of KD was made; he was treated with intravenous immunoglobulin and aspirin with good effect. Platelet count on day 14 was 933 (admission platelet count was 187). On day 18 he was noted to have mild peeling of his scrotum, hands, and feet. An echocardiogram showed left coronary artery ectasia. He was discharged on day 22 with follow up arrangements including repeat echocardiogram. He was, however, lost to follow up and no further data are available.

Discussion

A number of epidemiological and clinical observations suggest that KD may be caused by an infectious agent. These include geographic clustering of outbreaks, often with a seasonal predominance and the acute self limited nature of the illness. Many of the clinical features of KD are also seen in those of other infectious diseases, for example, adenoviral infection and scarlet fever. Staphylococci, streptococci, and Epstein–Barr virus are some of the infectious agents implicated in KD. An unusual degree of immune activation caused by bacterial and viral protein toxins acting as superantigens is currently considered to be the basis of pathology in KD. We believe that our case shows the possibility that a meningoococal toxin could act as a superantigen to cause KD. We were unable to find any published record of such an association in the literature. The currently proposed hypothesis to explain the pathogenesis is that a genetically susceptible host becomes colonised on the mucous membranes of the gastrointestinal tract by an organism that produces a toxin which behaves as a superantigen. We propose that a toxin producing meningoococcus could cause KD in the same fashion as toxic shock syndrome toxin producing Staphylococcus aureus. It is possible that our patient coincidentally had both illnesses at the time. Understanding the aetiology of KD remains a major unresolved issue in paediatrics. Although there is no conclusive data to support the superantigen induced disease theory for KD, evidence suggesting that superantigens may mediate KD is growing.

A V Ramanan, E M Baldam
Department of Paediatric Rheumatology, Royal Manchester Children’s Hospital, Manchester, UK. Correspondence to: Dr A V Ramanan, 508, 77 Elm Street, Toronto, Ontario M5G 1H4, Canada; avramanan@hotmail.com

References
A female infant, born to consanguineous Pakistani parents, was noted shortly after birth to have dysmorphic features, including prominent occiput, beaked nose, high arched palate, and arthrogryposis with dislocated hips and rocker bottom feet. Ichthyosis was also present. Metabolic acidosis developed within a few hours of birth and severe conjugated hyperbilirubinaemia within two days.

Renal tubular acidosis was manifest by generalised aminoaciduria, phosphaturia, and an N-acetylglucosamine:creatinine ratio of >1000. Liver investigations revealed similar enzymatic abnormalities, including increased alkaline phosphatase, but normal conjugated hyperbilirubinaemia, greatly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase. Plasma and urinary bile acids were normal. Histology of the patient's liver revealed the presence of normal numbers of biliary ducts and no lipofuscin deposition or inflammatory changes. No giant cells were present.

Recurrent episodes of necrotising enterocolitis occurred during the first two months of life (no organisms were identified in either the blood or faeces at the time of the original or recurrent episodes). Repeated episodes of sepsis occurred later. Marked failure to thrive persisted despite high calorie enteral feeds and correction of acidosis. The patient died at the age of 10 months.

This patient differs in two ways from previous reported cases. Firstly, liver histology varies from that reported by Eastham and colleagues, in whose patients the liver biopsy specimens all showed giant cell transformation. It may be possible that the histology did not show typical features due to early timing of the biopsy. It is however possible that our case represents a phenotypic variant of the same disorder.

Secondly, we believe our case to be the first reported to have necrotising enterocolitis. No immunodeficiency has been identified in our patient, unlike others in the literature. It was noteworthy that the patient was receiving hyperosmolar formula feeds at the time of the first episode. The occurrence of necrotising enterocolitis should warn clinicians of the potential risk of hyperosmolar feeds in severely growth retarded infants with acidosis, even when born at or after term. The corrected amounts are third family report. Clin Genet 1996;49:267–70.

References

Echocardiography on the neonatal unit

Two dimensional, M mode and Doppler echocardiography is widely used by paediatric cardiologists to evaluate cardiac structure and function in neonates, infants, and older children. Anecdotally, it is also being used increasingly by neonatologists in the early newborn period. We have recently undertaken a postal questionnaire survey of 38 neonatologists working in referral centres in the UK to review current UK practice. Thirty seven neonatologists responded to the questionnaire. Nineteen units performed more than 15 echocardiograms per month, six performed 10–15/month, and 12 performed less than 10/month. Echocardiograms were usually performed by paediatric cardiologists and/or neonatologists, but also occasionally by echocardiographic technicians. Neonatologists performed echocardiograms in two thirds of responding units. The commonest indications for echocardiography were: diagnosis/exclusion of congenital heart disease, assessment of ducal patency and haemodynamics, assessment of myocardial function, and assessment of pulmonary hypertension.

Only 12 (32%) units had 24 hour access to paediatric cardiology service on site; of those who did not, 18 units usually had access to these services on an on-call basis. Babies were transferred out of the neonatal unit for echocardiography in 13 (35%) responding units. Indomethacin was used to treat a symptomatic persistent ductus arteriosus (PDA) following a purely clinical diagnosis in 15 (41%) units.

This survey shows that echocardiography on the neonatal unit is often performed by a neonatologist rather than a cardiologist, presumably reflecting the (lack of) availability of 24 hour on-site paediatric cardiology services, even in neonatal referral centres. In a considerable number of units babies are either transferred out of the neonatal unit for echocardiographic assessment or receive treatment for PDA without prior echocardiographic confirmation. Such situations are undesirable and reflect the need for greater access to echocardiography on the neonatal unit, a service that is likely to be provided increasingly by neonatologists themselves in the future.

Although several paediatric echocardiography courses are available, currently there is no formal accreditation process for neonatologists. We believe there is a need to evaluate the reliability of echocardiography in the hands of neonatologists in a systematic way and are currently conducting such a study.

S Moss, N V Subhedar
Liverpool Women’s Hospital, Crown Street, Liverpool L8 7SS, UK; nvsubahedar_lwh@yahoo.com

References

Correction

In July’s Archives (Arch Dis Child 2002;87:85), the correction mentioned “the following table”; this was incorrect. The sentence should have read “The corrected amounts are listed in the revised figures”. No table was missing, and readers can view the revised figures at www.archdischild.com, as mentioned in the original correction. We apologise for the error.

Please see the Archives website (www.archdischild.com) to view the corrected figures.