Serum hyaluronic acid concentrations are increased in cystic fibrosis patients with liver disease

H A Wyatt, A Dhawan, P Cheeseman, G Mieli-Vergani, J F Price

Aim: To determine whether serum hyaluronic acid (HA) concentrations are abnormal in patients with cystic fibrosis (CF) liver disease, and if so, whether the abnormality is associated with disease severity.

Methods: A total of 74 patients with CF were assessed for evidence of liver involvement as indicated by clinical, ultrasound, and biochemical findings. Serum hyaluronic acid concentrations were measured and compared with concentrations in 293 normal controls. Lung function in the CF patients was also recorded.

Results: Thirty-four CF patients had no evidence of liver disease; in these, serum HA concentrations were similar to those in healthy controls (median [range]: 16.1 [9.4–75.1] vs 15 [1–77] µg/l). Nineteen CF patients had established liver disease detected by clinical and ultrasound examination, with significantly increased HA concentrations (56.1 [26–355] µg/l). Serum HA concentrations were also significantly increased, although to a lesser extent, in 21 CF patients with an abnormal liver ultrasound scan alone (22.4 [9.5–49.4] µg/l). There was no correlation between serum HA concentration and lung function.

Conclusion: Serum HA concentrations were significantly increased in children with clinical or ultrasound evidence of liver disease, being higher in those with more advanced hepatic damage. Despite the inflammation and fibrosis present in CF lungs there was no correlation between HA concentration and lung function, suggesting that high concentrations were a failure of hepatic clearance rather than overproduction in the lung. Longitudinal measurement of HA concentrations may prove a useful marker for the development of significant liver damage in CF patients.

Liver involvement in cystic fibrosis (CF) is frequent, but clinically overt liver disease is uncommon although associated with significant morbidity and mortality. The pathological process of focal biliary fibrosis progressing to cirrhosis and portal hypertension has been well described, particularly with relation to the increased understanding of the role of the CF transmembrane conductance regulator in the biliary epithelium. The true prevalence of liver involvement is unclear, however, varying from 2% to 35% depending on the definition used and the patient age group studied. As the overall survival in CF continues to increase, older patients with previous subclinical liver involvement may be vulnerable to progression to significant liver disease. Currently it is not possible to predict those most at risk of developing complications of liver involvement, and this in turn hampers the evaluation of potential disease modifying therapies used early in the course of the process. Clinical evidence of hepatic fibrosis is generally only apparent when the disease has become well established and the changes irreversible. Hepatocyte function is usually well preserved in CF liver disease until the process is advanced. Most commonly used markers of hepatic disease, however, are a measure of hepatocyte dysfunction rather than fibrosis, and as such are unhelpful in the early stages of liver disease in CF. In many non-CF liver diseases the diagnosis rests on histological findings; however in CF the patchy distribution of biliary involvement limits the value of liver biopsy. Other modalities, such as ultrasound (US) scanning and hepatobiliary scintigraphy are specific in the detection of abnormalities of the liver parenchyma and the biliary structure, but have not been shown to have prognostic value.

A feature of CF related liver disease is progressive biliary fibrosis. A potentially helpful marker of liver function in this condition could be hyaluronic acid (HA), a glycosaminoglycan rapidly cleared from the circulation by the liver, via receptor mediated endocytosis into sinusoidal endothelial cells. Besides impairment of endothelial cell function secondary to liver disease, raised serum HA could also be caused by its release into the circulation as a result of increased synthesis in the liver during hepatic fibrogenesis. The aim of this study was to determine whether concentrations of serum HA are abnormal in patients with CF liver disease, and if so, whether the abnormality is associated with liver disease severity.

PATIENTS AND METHODS

Subjects were recruited from both the regional CF centre and the supraregional hepatology service at King’s College Hospital, London. The diagnosis of cystic fibrosis had been previously established by increased sweat chloride and/or the presence of two known CF gene mutations. Patients were enrolled sequentially over a four year period when they attended either for their routine annual review or for a specialist liver appointment. Assessment included clinical examination, lung function testing, and an abdominal US scan. Biochemical tests of liver function were performed, including serum transaminases, γ glutaryl transferase, and international normalised prothrombin ratio (INR). A serum sample for HA concentration was stored at −70°C for later analysis. The subjects were divided into three groups according to clinical and US findings. Group 1 had no clinical, biochemical, or US evidence of hepatic abnormality. Group 2 comprised those with no abnormal clinical or biochemical findings, but a US scan with heterogenous and nodular liver structure. The aim of this study was to determine whether concentrations of serum HA are abnormal in patients with CF liver disease, and if so, whether the abnormality is associated with liver disease severity.

Abbreviations: CF, cystic fibrosis; HA, hyaluronic acid; HABP, HA binding protein; INR, international normalised prothrombin ratio; UDCA, ursodeoxycholic acid; US, ultrasound
parenchyma. Group 3 had clinical evidence of liver disease, and a US scan which showed a heterogenous and nodular parenchyma, and hepatosplenomegaly, with or without portal hypertension.

Clinical liver disease was defined as the presence of a firm liver edge palpable more than 2 cm below the costal margin in the right mid-clavicular line, or a palpable left lobe of the liver, and/or splenomegaly. Portal hypertension or ascites were also considered indicative of established hepatic disease. The liver US examination assessed the size, overall parenchymal reflectivity, the attenuation, and the parenchymal echo pattern. Assessment of parenchymal echo pattern is subjective and was therefore only performed by one of two ultrasonographers who had extensive experience in this area. US was also used to assess the biliary tract for evidence of obstruction or gallbladder disease, and to measure the size of the spleen. The maximum splenic length was recorded as the longest length from three measurements, and compared with recognised, age related values. Abnormal liver function tests were deemed present if greater than twice the upper limit of normal for our laboratory (γ glutaryl transferase 55 IU/l; aspartate aminotransferase 50 IU/l; total bilirubin 20 µmol/l; alkaline phosphatase, age and sex related ranges used) and INR greater than 1.2. Seventy five CF patients were eligible for the study. According to the above criteria, 33 of them had no evidence of liver disease (group 1), 22 had an abnormal US scan alone (group 2), and 19 had clinical and US evidence of established liver disease (group 3). Only one patient had elevation of liver function tests in the absence of detectable clinical or US abnormality. This patient was excluded from the study as the derangement in liver function tests was transient and considered to be secondary to ciprofloxacin therapy.

Lung function was measured by spirometry and expressed as a percentage of that predicted for age, sex, and height. Measurements were usually done at the time of the assessment, and only spirometry recorded within two months from when blood was taken for HA concentration was included.

HA was measured using an affinity binding radiometric assay (Pharmacia Diagnostics, Uppsala, Sweden) which uses an HA binding protein (HABP) prepared from bovine cartilage. The HA in 100 µl aliquots of undiluted serum bound to 125I-labelled specific HABP. Free 125I-HABP was then bound to exogenously added HA covalently linked to Sepharose and the complex separated by centrifugation. The amount of bound radioactivity was measured in a gamma counter and the response was inversely proportional to the concentration of HA in the sample. A normal range for hyaluronic acid had been determined previously by our group from a large group of healthy children and adolescents, aged from 5 to 19 years.

Table 1 Results of liver biochemistry, serum HA, and lung function in CF patients according to degree of liver involvement

<table>
<thead>
<tr>
<th></th>
<th>Normal controls</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>293</td>
<td>33</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Age (y)</td>
<td>10.4 (3.5)</td>
<td>10.1 (4.2)</td>
<td>11.5 (3.0)</td>
<td>14.8 (3.8)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>0.9</td>
<td>2.0</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>γ-glutaryl transferase (IU/l)</td>
<td>–</td>
<td>10.7 (4.2)</td>
<td>21.3 (11.3)</td>
<td>83.6 (103.3)</td>
</tr>
<tr>
<td>Aspartate transaminase (IU/l)</td>
<td>–</td>
<td>25.5 (7.8)</td>
<td>30.9 (8.3)</td>
<td>50.9 (26.4)</td>
</tr>
<tr>
<td>Alkaline phosphatase (IU/l)</td>
<td>–</td>
<td>214.1 (67.4)</td>
<td>263.1 (57.4)</td>
<td>367 (191.9)</td>
</tr>
<tr>
<td>Bilirubin (µmol/l)</td>
<td>–</td>
<td>5.5 (2.8)</td>
<td>6.1 (3.6)</td>
<td>15.7 (13.1)</td>
</tr>
<tr>
<td>INR</td>
<td>–</td>
<td>1.0 (0.2)</td>
<td>1.0 (0.09)</td>
<td>1.18 (0.18)</td>
</tr>
<tr>
<td>HA (µg/l)</td>
<td>15 (1–77)</td>
<td>15.9 (9.4–75.1)</td>
<td>23.2 (9.5–43.4)</td>
<td>56.1 (26–355)</td>
</tr>
<tr>
<td>p value</td>
<td>–</td>
<td>>0.05</td>
<td><0.05</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results expressed as mean (SD) except for HA level which is median (range). Probability values are for serum HA levels; each group is compared to normal controls using the Kruskal–Wallis test.

Statistics

Normally distributed data were analysed using one way ANOVA with Bonferroni correction for multiple comparisons. Serum HA concentrations were not normally distributed and were therefore analysed using the non-parametric Kruskal–Wallis test with Dunn’s test for multiple comparisons.

RESULTS

The healthy control population and the CF patients who had either a normal US scan (group 1) or an abnormal US scan...
alone (group 2) were of a similar age. The patients with established liver disease (group 3) were significantly older than the other two CF patient groups (p < 0.05) (table 1). Where lung function was recorded (14/19), the patients with liver disease had slightly poorer FEV1 than those without, but this was not statistically significant. There was no correlation between lung function and HA concentration in the CF patients ($r = 0.0001$). Standard liver function tests in groups 1 and 2 were all within their normal ranges. Although the liver function tests tended to be higher in group 2 compared to group 1, this was not statistically significant. Aspartate transaminase, γ glutamyl transferase, INR, bilirubin, and alkaline phosphatase were all significantly higher in group 3 than either group 1 or group 2.

Healthy subjects and CF patients with no evidence of liver disease (group 1) had similar HA concentrations, while concentrations were significantly increased in groups 2 and 3 compared to the normal controls (fig 1). Serum HA concentrations were also significantly different between groups 2 and 3 (p < 0.005), although the difference between groups 1 and 2 did not reach significance.

DISCUSSION

Standard tests of liver function are unhelpful in monitoring the liver involvement in CF. A reliable and minimally invasive method of detecting the presence and severity of hepatic fibrosis in CF is needed for the improved management of this condition. It would enable a more accurate assessment of the current prevalence of liver disease than previous estimates have achieved, and would also track any changes in the natural history of the process that may occur with the improving survival in CF. The early detection of hepatic fibrosis would predict those at risk of clinically significant liver disease who might potentially benefit from therapeutic intervention. The benefits of such intervention may be greater if commenced in the early stages of the disease process, but further clinical trials of disease modifying drugs require an accurate and dynamic marker of fibrosis.

Our cross sectional study suggests that serum HA concentrations in CF patients reflect the degree of hepatic damage. Serum HA concentrations were significantly increased in children with clinical liver disease. They were also significantly increased, although to a lesser extent, in a group of children with heterogeneous or nodular changes seen on liver ultrasound scan. CF patients without either clinical or US evidence of liver involvement (group 1) had HA concentrations similar to healthy controls.

HA is one of the glycosaminoglycans; it is found in all tissues and body fluids but is particularly abundant in loose connective tissue. It is a vital component of the viscoelasticity of extracellular matrix and contributes to lubrication between tissues. It is synthesised in the plasma membrane of fibroblasts and other cells, primarily in connective tissue and synovial membranes. Some HA is metabolised locally, but most is transported by lymphatic pathways to blood, from where over 90% is cleared rapidly by the liver via receptor facilitated uptake and catabolism in liver endothelial cells. The half life of HA in the circulation of healthy subjects is 2–5 minutes. Normal serum HA concentrations are age dependent with a decline from infancy to adulthood, and rise again in the elderly. Raised serum HA concentrations have been shown in non-CF liver diseases and are considered to be due largely to impaired clearance of HA from the circulation by damaged liver endothelial cells. More than 10 years ago Nyberg and colleagues showed that serum hyaluronate is a sensitive marker for progressive liver damage in primary biliary cirrhosis. However, despite its potential usefulness serum HA has not become widely used in primary biliary cirrhosis because it does not offer more accurate information than the simple measurement of bilirubin concentrations in this condition. HA concentrations are raised in the majority of infants presenting before the age of 6 months with biliary atresia, α-antitrypsin deficiency, cryptogenic hepatitis and appear to be a better predictor of progressive liver disease in infancy than standard laboratory tests of liver function. We have shown previously that a raised HA before portocentral-ostomy in children with extrahepatic biliary atresia has a positive predictive value of 74% for identifying those patients who would die or require liver transplant before the age of 5 years.

All CF patients in this study were on standard medication for management of this condition, primarily comprising pancreatic enzyme replacement, multivitamin preparations, and antibiotics. There is no evidence that any of these drugs affect serum HA concentrations. In addition, enzyme therapy for liver disease. The considerable overlap in HA concentrations between patients with no clinical or US evidence of liver disease. The HA concentrations in CF patients reflect the degree of hepatic damage. The considerable overlap in HA concentrations between patients with no clinical or US evidence of liver disease (group 1) and those with US abnormalities (group 2)
may derive from the fact that US is a relatively insensitive test for parenchymal damage or fibrosis. It is conceivable that some of the patients with high HA concentrations in group 1 have liver damage not yet detectable by US. A longitudinal study of serum HA concentrations, paired with US examination, from early childhood in a large number of patients with CF would determine whether serum HA is a reliable measure of progression of hepatic fibrosis in this disease. HA in turn may prove useful in the evaluation of pharmacological treatments aimed at arresting this progression.

Authors’ affiliations
H A Wyatt, A Dhawan, P Cheeseman, G Mieli-Vergani, J F Price, Department of Child Health, King’s College Hospital, Denmark Hill, London SE5 9RS, UK

REFERENCES
Serum hyaluronic acid concentrations are increased in cystic fibrosis patients with liver disease
H A Wyatt, A Dhawan, P Cheeseman, G Mieli-Vergani and J F Price

Arch Dis Child 2002 86: 190-193
doi: 10.1136/adc.86.3.190

Updated information and services can be found at:
http://adc.bmj.com/content/86/3/190

References
This article cites 22 articles, 4 of which you can access for free at:
http://adc.bmj.com/content/86/3/190#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Liver disease (180)
- Clinical diagnostic tests (1133)
- Radiology (976)
- Radiology (diagnostics) (760)
- Cystic fibrosis (182)
- Pancreas and biliary tract (269)
- Immunology (including allergy) (2018)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/