The incidence of chronic lung disease (CLD) following premature birth is increasing, mainly because of improved survival rates of infants born at very early gestation. It is important therefore to determine the continuing needs of affected infants to ensure appropriate allocation of health service resources. Many studies were performed before the routine use of antenatal steroids and postnatal surfactant and included relatively mature infants, and thus their results are not applicable to the present population of infants. In addition, the studies usually concentrated on rehospitalisation rates and are likely to have underestimated health service utilisation after discharge from the neonatal intensive care unit. Infants with CLD are often suffering troublesome wheeze and cough at follow up, which may increase their outpatient attendances and primary care contacts. The most severely affected infants continue to require supplementary oxygen after term and after discharge home. Maintaining adequate oxygen saturation by giving supplementary oxygen, however, increases weight gain and reduces pulmonary artery pressure, airway resistance, and the frequency of intermittent hypoxaemic episodes. Thus it cannot be predicted whether infants requiring home oxygen will have higher rates of rehospitalisation and primary care contact than other infants with CLD, and no such comparison has been previously undertaken. The aims of this study were to assess healthcare use by infants with CLD during the first two years after birth and whether this was influenced by a continuing requirement for supplementary oxygen after discharge from the neonatal intensive care unit.

METHODS
A four centre study has previously been reported. The study sample consisted of neonates born at less than 32 weeks of gestational age who had been admitted during the first week after birth to one of four neonatal intensive care units between 1 July 1994 and 1 July 1997, subsequently developed CLD (defined as an oxygen dependency beyond 28 days after birth), and survived until discharge. A retrospective review was made of their care in the community and during any readmission after discharge from the neonatal intensive care unit until 2 years of age. In this paper, the data collected in the four centre study were reanalysed to assess whether health care utilisation of infants with CLD during the first two years after birth was influenced by a continuing requirement for supplementary oxygen after discharge from the neonatal intensive care unit. The study was approved by the local research ethics committee of each of the four hospitals.

From the neonatal admission records, the following data were retrieved: birth weight, use of antenatal steroids and postnatal surfactant, development of an air leak (pneumothorax/pulmonary interstitial emphysema) or patent ductus arteriosus (clinical diagnosis with or without echocardiographic confirmation), duration of ventilatory support and supplementary oxygen, and use of high frequency oscillation and/or nitric oxide. From the general practitioners’ records, the following data were retrieved: the venue of all hospital readmissions, the number of general practitioner consultations, all medication prescribed, the use of home oxygen, the number of referrals to a health visitor or community paediatric nurse, and the use of community support services. For each hospital admission the following information was recorded: the diagnosis or symptoms leading to the admission, the duration of stay, whether the child was admitted to a paediatric ward, high dependency unit, or intensive care unit, days of supplementary oxygen and intravenous fluids, surgical or therapeutic procedures, and duration and frequency of all medication. Each infant’s hospital records were examined to ascertain the number of outpatient attendances.

Costs were assessed over the two year period. The costs per bed per day were obtained from the four main hospitals in the study. The mean cost (£634 per day for the high dependency unit) for supplementary oxygen in the home oxygen group was greater (£592), this reflected higher costs for hospital stay (£384), total inpatient care (£310), and primary care drugs (£78). The home oxygen patients required significantly more and longer admissions (p < 0.01) and more outpatient attendances (p < 0.05). The total cost of care per infant of the home oxygen group was greater (p < 0.001), this reflected higher costs for hospital stay (p < 0.01), total inpatient care (p < 0.01), and primary care drugs (p < 0.01).

Conclusion: Despite routine use of antenatal steroids and postnatal surfactant, certain patients with CLD, particularly those who receive home oxygen treatment, show high rates of utilisation of health service resources after discharge from the neonatal care unit.

Abbreviations: CLD, chronic lung disease.
significance using a Kruskal-Wallis non-parametric analysis.

Groups for continuous variables were assessed for statistical differences. Patients who received supplementary oxygen when discharged home had a total of 236 readmissions compared with 324 readmissions for those who did not receive oxygen at home (p < 0.05; **p < 0.01; ***p < 0.005 compared with home oxygen group).

Patients

Screening of 1581 case records showed that 459 infants fulfilled the eligibility criteria. In 205 cases the detailed hospital (n = 200) or primary care (n = 5) records could not be retrieved, and in 19 cases written parental consent was not obtained. The study sample consisted of 235 infants with a median gestational age of 27 weeks (range 22–31) and birth weight of 934 g (510–3000). Eighty eight of the infants were discharged home in oxygen (table 1).

RESULTS

The 235 infants had a total of 560 hospital admissions, and the mean duration of stay per infant was 14.6 days. Seventy infants were never readmitted. The mean number of general paediatric ward admissions was two, with a mean duration of admission of 11.2 days. Twenty one children required admission to the intensive care unit, four on two occasions; the mean duration of stay was 0.8 days (table 2).

Eighty eight infants were discharged home in oxygen; the home oxygen group differed significantly from the rest of the cohort in that a greater proportion had received antenatal steroids (p < 0.05), more had received postnatal surfactant (p < 0.05), a smaller proportion had been supported by continuous positive airways pressure (p < 0.001), and a greater proportion developed an air leak (p < 0.05) (table 1). The infants receiving oxygen at home had a total of 236 readmissions compared with 324 readmissions for those who did not receive oxygen at home.

Table 1 Basic details and neonatal intensive care unit outcome related to home oxygen status

<table>
<thead>
<tr>
<th></th>
<th>All infants (n=235)</th>
<th>Home oxygen (n=88)</th>
<th>No home oxygen (n=147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age (weeks)</td>
<td>27 (22–31)</td>
<td>27 (23–31)</td>
<td>27 (22–33)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>934 (510–3000)</td>
<td>927 (510–2178)</td>
<td>934 (515–3000)</td>
</tr>
<tr>
<td>Antenatal corticosteroids</td>
<td>86%</td>
<td>95%</td>
<td>82%</td>
</tr>
<tr>
<td>Postnatal surfactant</td>
<td>87%</td>
<td>93%</td>
<td>84%</td>
</tr>
<tr>
<td>CPAP</td>
<td>57%</td>
<td>32%</td>
<td>72%</td>
</tr>
<tr>
<td>IPPV</td>
<td>97%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>HFOV</td>
<td>6%</td>
<td>4%</td>
<td>7%</td>
</tr>
<tr>
<td>NO</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Airleak</td>
<td>15%</td>
<td>22%</td>
<td>11%</td>
</tr>
<tr>
<td>Postnatal dexamethasone</td>
<td>39%</td>
<td>38%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Data are given as median (range) where applicable.

CPAP, Continuous positive airways pressure; IPPV, intermittent positive pressure ventilation; HFOV, high frequency oscillatory ventilation; NO, nitric oxide.

Table 2 Hospital admissions related to home oxygen status

<table>
<thead>
<tr>
<th></th>
<th>All infants (n=235)</th>
<th>Home oxygen (n=88)</th>
<th>No home oxygen (n=147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All admissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number per baby</td>
<td>2 (0–20)</td>
<td>2 (0–20)</td>
<td>1 (0–20)*</td>
</tr>
<tr>
<td>Duration per baby (days)</td>
<td>5 (0–282)</td>
<td>7 (0–131)</td>
<td>3 (0–282)**</td>
</tr>
<tr>
<td>Admissions to paediatric wards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number per baby</td>
<td>1 (0–20)</td>
<td>2 (0–19)</td>
<td>1 (0–20)**</td>
</tr>
<tr>
<td>Duration per baby (days)</td>
<td>3 (0–239)</td>
<td>4.5 (0–86)</td>
<td>2 (0–239)**</td>
</tr>
</tbody>
</table>

Data are given as median (range) *p<0.05; **p<0.01; ***p<0.005 compared with home oxygen group.

Analysis

The patients were divided into two groups: the home oxygen group received supplementary oxygen when discharged home and the no home oxygen group did not. Differences between groups for continuous variables were assessed for statistical significance using a Kruskal-Wallis non-parametric analysis of variance, and differences between groups for categorical data were tested using either a χ² or Fisher’s exact test, as appropriate.
home. Eighteen (20.5%) in the home oxygen group and 52 (35.4%) in the no home oxygen group were never readmitted (p < 0.06). Both the numbers and duration of admission to hospital and the general paediatric wards were significantly greater in the home oxygen group (table 2). There were 14 admissions (12 patients) to the paediatric intensive care unit in the home oxygen group and 11 (nine patients) in the no home oxygen group (NS). The duration of stay per patient also did not differ significantly between the two groups, being a median of 0 days (0–38) in the home oxygen group and 0 days (0–23) in the no home oxygen group. The home oxygen group required more outpatient attendances (p < 0.05) (table 3). The total cost of care was higher in the home oxygen group (p < 0.001), the costs being greater for hospital stay (p < 0.01), total inpatient care (p < 0.01), and primary care drugs (p < 0.01) (table 4).

DISCUSSION

We have shown that infants with CLD who need supplementary oxygen at home require more frequent and longer readmissions than those who do not. This means that the total cost of their care during the two year period was about 40% greater. The infants studied were primarily cared for in four centres. They were identified retrospectively and thus no attempt could be made to standardise the criteria for use of home oxygen treatment between the centres. There is, however, controversy as to the most appropriate oxygen saturation level at which to maintain infants with CLD, and, as a consequence, the use of home oxygen treatment varies between institutions, as indicated by our data. We feel therefore that our sample of infants using oxygen at home is representative, and we emphasise that our aim was to compare morbidity of infants who were and were not discharged home with supplementary oxygen.

Previous studies have shown that up to 50% of patients with CLD require readmission in the first year after birth and 20–37% in the second year. Some 70% of the present sample required at least one readmission during the first two years. The mean number of readmissions (2.4) per patient was lower than previously reported (five) and, as a consequence, the use of home oxygen treatment varies significantly shorter periods in hospital (table 2). In addition, although the home oxygen group did not have more readmissions but the general practitioners’ case notes were also scrutinised. Many previous studies that examined readmission rates in infants with CLD were carried out in the 1980s. It is possible that routine use of both antenatal steroids and postnatal surfactant may have impacted favourably on the number of readmissions required by infants with CLD.

In a prospective study, 12 of 21 infants were readmitted during a mean of 6.9 months while needing home oxygen treatment. About 80% of the infants needing oxygen at home in our study required at least one readmission in the first two years after birth. The proportion of the rest of the cohort requiring admission was not dissimilar (65%), but that group spent significantly shorter periods in hospital (table 2). In addition, although the home oxygen group did not have more primary care contacts, outpatient attendances were more frequent. These differences may reflect the fact that, in the United Kingdom, consultant supervision of home oxygen programmes is hospital based.

One third of our infants with CLD were discharged home in supplementary oxygen. Increasing survival rates of very immature infants may result in a greater proportion of infants with CLD being dependent on home oxygen in the future. The greater healthcare utilisation and associated costs of oxygen supplementation at home shown here have important implications for the planning of health service resource allocation. Our data emphasise the urgency of identifying an effective and safe method of preventing CLD.

Table 3 Outpatient attendances and primary care contacts related to home oxygen status

<table>
<thead>
<tr>
<th></th>
<th>All infants</th>
<th>Home oxygen</th>
<th>No home oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient attendances</td>
<td>8 (0–41)</td>
<td>10 (1–27)</td>
<td>8 (0–41)*</td>
</tr>
<tr>
<td>Contacts with general practitioner</td>
<td>13 (0–76)</td>
<td>13 (0–56)</td>
<td>13 (0–76)</td>
</tr>
<tr>
<td>Community care contacts</td>
<td>17 (0–169)</td>
<td>14 (0–69)</td>
<td>18 (1–169)</td>
</tr>
<tr>
<td>Consultations for respiratory illness</td>
<td>6 (0–48)</td>
<td>6 (0–28)</td>
<td>5 (0–48)</td>
</tr>
</tbody>
</table>

*The data are expressed as the median number per patient (range).

*p<0.05 compared with the home oxygen group.

Table 4 Cost of care (£) related to home oxygen status

<table>
<thead>
<tr>
<th></th>
<th>Total (n=235)</th>
<th>Home oxygen (n=88)</th>
<th>No home oxygen (n=147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital stay</td>
<td>3405 (1244) (0–73931)</td>
<td>4061 (2245) (0–73931)</td>
<td>3013 (1156) (0–54470)*</td>
</tr>
<tr>
<td>Hospital drugs</td>
<td>92 (9) (0–2235)</td>
<td>107 (19) (0–2235)</td>
<td>84 (5) (0–1978)</td>
</tr>
<tr>
<td>Total inpatient</td>
<td>3498 (1283) (0–74252)</td>
<td>4168 (2312) (0–74252)</td>
<td>3096 (1156) (0–56448)*</td>
</tr>
<tr>
<td>Outpatient</td>
<td>1071 (899) (0–8701)</td>
<td>1133 (968) (114–8701)</td>
<td>1034 (864) (0–4616)</td>
</tr>
<tr>
<td>Primary care respiratory related</td>
<td>152 (126) (0–972)</td>
<td>155 (135) (0–729)</td>
<td>150 (117) (0–972)</td>
</tr>
<tr>
<td>Primary care drugs</td>
<td>414 (126) (0–2890)</td>
<td>946 (815) (105–2890)</td>
<td>95 (43) (0–1423)*</td>
</tr>
<tr>
<td>Primary care total</td>
<td>454 (324) (0–4374)</td>
<td>373 (279) (0–1755)</td>
<td>503 (360) (18–4374)</td>
</tr>
<tr>
<td>Total</td>
<td>5600 (3261) (95–85831)</td>
<td>6802 (4824) (896–85831)</td>
<td>4881 (2539) (95–58444)**</td>
</tr>
</tbody>
</table>

*Data are given as mean (median) (range).

*p<0.01, **p<0.001 compared with home oxygen group.

Key message

Infants with CLD who require supplementary oxygen at home have high rates of utilisation of health service resources after discharge from the neonatal care unit.
ACKNOWLEDGEMENTS
The research nurses were funded by Abbott Laboratories. We are grateful to Mr Mark Elsley for assistance with data analysis and Ms Sue Williams for secretarial assistance.

Authors' affiliations
A Greenough, S Cox, Department of Child Health, King’s College Hospital, London, UK
J Alexander, W Lenney, F Turnbull, North Staffordshire Hospital, Stoke on Trent, UK
S Burgess, PAJ Chetcuti, Department of Neonatal Medicine, Leeds General Infirmary, Leeds, UK
NJ Shaw, A Woods, Liverpool Women’s Hospital, Liverpool, UK
J Boorman, S Coles, Abbott Laboratories Ltd, Maidenhead, Berks, UK
J Turner, Therapeutic Management, Crawthorne, Surrey, UK

REFERENCES
Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease

Arch Dis Child 2002 86: 40-43
doi: 10.1136/adc.86.1.40

Updated information and services can be found at:
http://adc.bmj.com/content/86/1/40

These include:

References
This article cites 19 articles, 6 of which you can access for free at:
http://adc.bmj.com/content/86/1/40#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Child health (3922)
- Infant health (811)
- Health economics (78)
- Health policy (187)
- Health service research (160)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/