Aetiology and clinical presentations of auditory processing disorders—a review

D-E Bamiou, F E Musiek, L M Luxon

Abstract
Auditory processing disorders may have detrimental consequences on a child’s life, if undiagnosed and untreated. We review causes of auditory processing disorders in order to raise clinical awareness. Auditory processing disorders may present against a background of neurological disease or developmental disorders, as well as in isolation. Clinicians need to be aware of potential causes and implications of auditory processing disorders.

(Arch Dis Child 2001;85:361–365)

Keywords: auditory processing; attention deficit disorder; dyslexia; dysphasia

Hearing is a complex process that orchestrates transduction of the acoustic stimulus into neural impulses by the ears, transmission of the neural impulses by the auditory nerves to the brain, and perceptual registration and cognitive elaboration of the acoustic signal by the brain as well as conscious perception of the sound. Hearing impairment(s) arising from pathology of the brain may have detrimental consequences on a child’s life if untreated; however, diagnostic and management strategies for these “central” hearing impairments in childhood are rarely implemented. These auditory deficits have been collectively termed “auditory processing disorders”, in order to incorporate the interaction between peripheral and central pathways.

A rough prevalence estimate for auditory processing disorders (APD) in childhood is 7%. Despite the frequency of the problem, a systematic approach to the diagnosis and rehabilitation of APD in children has only started emerging over the past 30 years, as a result of developments in basic sciences; emphasis has shifted from identification of the lesion that causes the disorder to identification of the impaired individual’s difficulties and their appropriate remediation.

Anatomy of the central auditory nervous system
The central auditory nervous system (CANS) extends from the cochlear nucleus in the brain stem to the auditory cortex. The superior olivary complex, lateral lemniscus and inferior colliculus, medial geniculate body, and reticular formation are important relay stations. The cortical and subcortical auditory areas mainly consist of Heschl’s gyrus, the planum temporale (extending from the posterior aspect of Heschl’s gyrus to the end of the Sylvian fissure), and the Sylvian fissure with the insula. The cerebral hemispheres are connected by the corpus callosum. The CANS is characterised by an intrinsic “redundancy”—that is, an extensive interaction of its structures that is responsible for the resistance of the system to exhibit deficits on standard auditory testing in the presence of a lesion.

In children, myelination and maturation continue until 10–12 years of age. The young brain has an inherent ability for plasticity: the forebrain sensory representations may change in response to altered receptors, sensory environment, or use and learning.

Clinical presentation
Children with auditory processing disorders appear to be uncertain about what they hear, and may have difficulties listening in background noise, following oral instructions, and understanding rapid or degraded speech in the presence of normal peripheral hearing. Symptoms may become apparent in the early school years or at a later academic stage of the child’s life, due to changes in the acoustic environment or to increased academic demands. In rare cases, these symptoms may be the first manifestation of a neurological disorder.

Table 1 Deficits and resulting symptoms and behaviours which characterise APDs

<table>
<thead>
<tr>
<th>Auditory deficits in:</th>
<th>Resulting symptoms and behaviours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound localisation</td>
<td>Poor performance in confusing environments</td>
</tr>
<tr>
<td>Auditory pattern recognition</td>
<td>Difficulties following oral instructions</td>
</tr>
<tr>
<td>Auditory discrimination</td>
<td>Language, reading, and spelling disorders</td>
</tr>
<tr>
<td>Temporal processing</td>
<td>Difficulties with rapid/degraded speech and with auditory closure</td>
</tr>
<tr>
<td>Processing degraded auditory signals</td>
<td>Difficulties in background noise</td>
</tr>
<tr>
<td>Processing the auditory signal when embedded in competing acoustic signals</td>
<td>Inattention</td>
</tr>
<tr>
<td></td>
<td>Distractibility</td>
</tr>
<tr>
<td></td>
<td>Academic difficulties</td>
</tr>
</tbody>
</table>
the primary auditory difficulties, children with APDs may have secondary characteristics of language, reading and spelling disorders, as well as inattention and distractibility (table 1); this profile requires careful consideration and diagnostic evaluation for differentiation from other common childhood developmental disorders.

Auditory processing disorders may result from disruption of processes specific to audition, as well as from more global deficits (for example, memory or attention deficits) that have a negative impact on the processing of auditory information. Irrespective of the causal mechanism, an APD may manifest as a deficit in sound localisation, discrimination, pattern recognition, temporal processing, and performance deficits when the auditory signal is degraded or embedded in competing acoustic signals (table 1). These deficits have electrophysiological as well as behavioural correlates.

Diagnosis

Central auditory testing clinically evaluates the integrity of the CANS and provides a “bottom up” sensory cognitive approach to learning and behavioural problems as well as an index to neuropathological constellations. Central auditory nervous system problems may be isolated or associated with more pervasive processes and conditions which closely interact with other sensorimotor modalities as well as “top down” cognitive functions. The diagnosis of APD thus requires a multidisciplinary approach with careful consideration of cognitive, memory, and linguistic parameters. Diagnosis relies on synthesis of information from history (medical, educational, developmental), behavioural and electrophysiological tests, as well as ancillary procedures such as neuroimaging, speech and language assessment, and psychological/cognitive assessment, after careful consideration of confounding factors.

The testing battery (table 2) includes:
- Baseline audiometric assessment to exclude a peripheral hearing loss
- Behavioural central auditory tests. These tests may tap into more than one auditory process, and fall into three main categories:
 - monaural low redundancy; speech stimuli that are either degraded (e.g. in terms of frequency content), or embedded in competing signals (e.g. in noise or multispeaker babble) are presented to one ear, and the child is requested to identify the speech stimulus
 - dichotic/binaural interaction tests: stimuli are presented to both ears, and the task requires the child to attend to one ear only or to both at the same time
 - temporal tests, e.g. sequencing tasks
- Electrophysiological tests. These may include auditory brain stem evoked responses and middle latency response, which are key measures for auditory structures in the brain stem and in subcortical to cortical levels respectively; and late potentials, which may or may not be affected by attention, such as the P300 or Mismatch Negativity (MMN).

Classification

In terms of pathophysiological mechanisms, APD may be classified as occurring in the presence of:
- neurodevelopmental conditions; delayed central nervous system maturation; or other developmental disorders.
- neurodevelopmental conditions associated with APD

Few cases of APD in children have an underlying neurodevelopmental deficit. However, an APD may occasionally be the only or the presenting manifestation of a neurological disorder, highlighting the necessity for a high clinical index of suspicion and the value of neurological and developmental examination.

Tumours of the CANS

The concept of (central) APDs may be traced back to Bocca’s audiological findings in adults with brain tumours that affect the auditory areas. Children with CANS tumours have similar ear deficits to adults, notwithstanding the young brain’s capacity for plasticity. In the presence of severe neurological symptomatology, auditory difficulties may not be perceived as a major symptom, even in the presence of grossly abnormal central auditory test results. Conversely, APD may be the first and only manifestation of a space occupying lesion, and the auditory deficits may be mistaken for a learning disability. Appropriate surgical and rehabilitational intervention may lead to improvements in behavioural and electrophysiological findings, highlighting the young brain’s potential for plasticity and the need for aggressive rehabilitative training.

Prematurity and low birth weight

Preterm infants with low birth weight may suffer from APD which significantly improves with time; however, by the age of 14 years some of these children will continue manifesting subtle auditory deficits, such as poor auditory memory span, in a significantly greater proportion than the normal birth weight population.

Extrinsic damage to the brain

Bacterial meningitis is implicated as a cause of auditory processing disorder, but the supporting evidence is inconclusive. Single case

Table 2 Testing battery for APDs

<table>
<thead>
<tr>
<th>Baseline audiometric tests</th>
<th>Pure tone audiogram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tympanogram</td>
</tr>
<tr>
<td></td>
<td>Otoacoustic emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavioural central auditory tests</th>
<th>Monaural low redundancy tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e.g. filtered words, auditory figure-ground test</td>
</tr>
<tr>
<td></td>
<td>Dichotic tests/binaural interaction tests</td>
</tr>
<tr>
<td></td>
<td>e.g. dichotic digits, competing sentences</td>
</tr>
<tr>
<td></td>
<td>Temporal tests</td>
</tr>
<tr>
<td></td>
<td>e.g. frequency pattern test, temporal gap detection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrophysiological tests</th>
<th>Auditory brain stem evoked responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Middle latency response</td>
</tr>
<tr>
<td></td>
<td>P300</td>
</tr>
<tr>
<td></td>
<td>Mismatch negativity</td>
</tr>
</tbody>
</table>
Auditory processing disorders

reports also indicate that *herpes simplex en-cephalitis* can be associated with central deaf-
ness in children—that is, central auditory system dysfunction that results in practically no
useable hearing.1

Lyme disease, a tick borne infection caused by the spirochete *Borrelia burgdorferi*, may have
long term sequelae of auditory processing difficulties14 which may persist following treat-
ment.

APD may also be caused by head trauma.15 Children who sustain closed head injury may
suffer from atrophy of the posterior corpus cal-
lsum, resulting in auditory hemispheric dis-
connection.16

Low level heavy metal exposure in children
may affect sites in the CANS. Blood mercury
levels may correlate with auditory brain stem
response (ABR) delayed latencies,16 as well as
with poorer central auditory processing abili-
ties.17 Similarly, prenatal exposure to cigarette
smoke,18 alcohol,19 or postnatal anoxia20 may also
be implicated in higher prevalence of APD.

Cerebrovascular disorders

The auditory deficit in stroke in childhood can
be quite dramatic, with no behavioural re-
sponse to sound despite the presence of normal
otoacoustic emissions and ABR, as in the case of
a 3 year old child with Moyamoya disease.21

Metabolic disorders

Cortical deafness with auditory agnosia may be
a presenting feature of adrenoleucodystrophy;
this symptom may temporarily respond to
treatment.22 There are no systematic studies of
APD in the presence of inborn errors of
metabolism, although several of these condi-
tions are known to affect central auditory
structures with abnormal auditory evoked
response potentials (see, for example, Kaga and
colleagues23). In view of new treatment possi-
bilità, and of the brain’s capacity for plasticity,
such studies are urgently required.

Epilepsy

Central auditory impairment has been re-
ported in association with bihemispheric sei-
zure disorder. Following successful surgery to
control the epilepsy,24 children may show
improvement in measures of central auditory
function, but results are variable.

Landau–Kleffner syndrome is characterised by
acquired aphasia and epileptic seizures, with
onset in childhood.25 The major feature of the
disease is the inability to understand spoken
language; this has in turn been interpreted as
reflecting an impairment of auditory phono-
logical discrimination,26 a generalised auditory
agnosia rather than a phonological decoding
deficit,27 or a phonological deficit underlined
by insensitivity to loudness and a defect in
temporal resolution.28 The length of electrical
status epilepticus in sleep has a strong negative
correlation with receptive as well as expressive
language scores, highlighting the need for
timely medical or surgical intervention.29

Delayed maturation of the central
auditory pathway

The human auditory system is fully developed
at birth; however, myelination continues for
several years in the higher auditory pathways,
as reflected in ABR and middle/late auditory
potentials indices, which reach adult values
around 2 years of age and by 10–12 years of age
respectively,30 as well as in the improved behav-
ioral performance with age in several behav-
ioral central auditory tests.31 Auditory depriva-
tion may have deleterious effects on the
organisation of the auditory pathway; thus
maturation of some aspects of central auditory
function may be limited by the onset and dura-
tion of the period of deafness prior to cochlear
implantation.32 Similarly, auditory deprivation
may underlie delayed maturation of the central
auditory pathway in children who have a
history of glue ear, and who show significantly
ger poorer performance in behavioural as well as
prolonged ABR wave latencies33 than normal
controls.

Developmental Abnormalities

Attention deficit hyperactivity disorder

The diagnosis of attention deficit hyperactivity
disorder (ADHD) is made on the basis of
reported symptoms of inattention, impulsivity,
and hyperactivity that are developmentally
inappropriate and which are observed in at
least two different settings. In contrast, APD is
diagnosed on the basis of history, audiometric
behavioural and electrophysiological test find-
ings, and ancillary procedures (see table 3).

Shortcomings arising from diagnostic method-
ologies and overlapping symptomatology of the
two conditions may account for the debate as
to whether APD and ADHD are a single34 or
two distinct but co-morbid developmental dis-
orders.35 Clinicians can identify a reasonably
exclusive set of diagnostic behavioural charac-
teristics for ADHD and APD.36 However, con-
sistency does not ensure validity of the diagno-
sis, and APD and the predominantly
inattentive subtype of attentional deficit disor-
der may yet be a single developmental disor-
der.37 Neurophysiological studies have
found smaller MMN amplitudes to auditory
stimuli in children with ADHD,38 and this may
underlie the presence of an auditory processing
deficit; however, this is not a specific finding.
There is a clear need to identify electrophysio-
logical indices that would permit a confident
diagnosis of ADHD and/or APD in order to
choose appropriate modes of treatment.

Table 3 Behavioural signs of APD and ADHD, as
ranked by clinicians in terms of frequency (high to low) for
each disorder

<table>
<thead>
<tr>
<th>ADHD</th>
<th>APD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Inattentive**</td>
<td>Difficulty in hearing noise</td>
</tr>
<tr>
<td>2 Distracted*</td>
<td>Difficulty following oral instructions</td>
</tr>
<tr>
<td>3 Hyperactive</td>
<td>Poor listening skills</td>
</tr>
<tr>
<td>4 Fidgety or restless</td>
<td>Academic difficulties</td>
</tr>
<tr>
<td>5 Hasty or impulsive</td>
<td>Poor auditory association skills</td>
</tr>
<tr>
<td>6 Interrupts or intrudes</td>
<td>Distracted*</td>
</tr>
<tr>
<td>7 Inattentive**</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Chermak and colleagues.39
Asterisks represent commonly observed behaviours in ADHD and APD; note the difference in ranking.
Dyslexia
There is still debate as to whether dyslexia is a specifically linguistic disorder or whether the underlying phonological deficit is caused by an auditory temporal processing deficit. Characteristic structural abnormalities of auditory areas in the brain have been reported in dyslexics. Behavioural studies have indicated that dyslexics suffer from temporal processing deficits which are differentially related to lexical and non-lexical reading strategies.

There is abounding empirical support that an auditory processing deficit may underlie some forms of dyslexia; however, it needs to be clarified to what degree this temporal deficit affects other modalities such as vision, and whether other potential factors might contribute to dyslexia. We believe that dyslexics with listening behaviours strongly suggestive of an auditory deficit should be referred for detailed audiological evaluation and appropriate audiological rehabilitation.

Language impairment
The issue of an auditory temporal processing deficit as opposed to a purely linguistic deficit being causal to specific language impairment (SLI) (developmental dysphasia) remains controversial. Specific language impairment refers to language impairment that cannot be explained on the basis of neurological, cognitive, motor, or sensory deficits. However, this definition may be inappropriate, as from the early 1970s, there is evidence to support the causal link of an auditory processing deficit to specific language impairment. Neuropsychological studies in developmental dysphasia have identified structural abnormalities of auditory areas of the brain. Subsequent studies led to the hypothesis that the temporal processing deficit may also affect other sensory modalities, but the auditory processing deficit seems to be of more crucial importance for the language impairment. The strongest argument in favour of the auditory basis for SLI comes from remedial studies which found significantly greater improvement in auditory and language processing in children with SLI who received training with acoustically modified speech than normal children.

Learning disability
In some cases, learning disabled children may have central auditory deficits similar to those observed in adult patients with surgical section of the corpus callosum, indicating that the auditory deficits may be due to disruption of interhemispheric processing of auditory information, possibly due to delayed myelination. These children may also have longer latencies of the middle latency response as well as diminished MMN to stimuli of specific rapid speech changes than normal children. Learning disabled children are a heterogeneous group; however, identification of underlying specific auditory deficits may indicate what remedial action is appropriate.

Management
Management of APD (see table 4) consists of the following:

- Signal enhancement strategies which aim to improve the signal to noise ratio, for example by minimising background noise or by using frequency modulated systems in the classroom.
- Auditory training which makes use of the brain’s plasticity and can be formal (by means of sophisticated equipment and strictly controlled stimuli) or informal. Formal auditory training may include: computerised commercial programs such as FastForWord (Scientific Learning Corporation, 1997; http://www.scilearn.com/) and Earobics (Cognitive Concepts, Inc., 1997; http://www.earobics.com/), which alter speech acoustics and adaptively speed up neural processing; or training in the audiology clinic with modified central auditory tasks. Informal strategies can be applied at home or at school and include tasks such as vowel/consonant training, simple games such as “Simon”, etc.
- Linguistic and cognitive strategies which aim to increase use of compensatory strategies.

APD management is not without controversy. As critics point out, these interventions are based on certain assumptions, including a bottom up (sensory to cognitive) model of the brain’s processing of incoming speech signals, the assertion that auditory processing defects cause language impairments, and the acceptance that targeting the auditory defect by a training programme will lead to improved language. However, these assertions are still under debate. Despite this continuing debate on the exact relation of audition and language, there is a growing body of evidence that APD management is beneficial. While further research is needed to clarify why and how this management actually works, it is important to identify and to address these auditory processing deficits by appropriate specific strategies.

Conclusion
Auditory processing disorders may be a feature of both neurological and developmental disorders. However, whereas APD appears to be

<table>
<thead>
<tr>
<th>Management strategies</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal enhancement strategies</td>
<td>Minimise background noise</td>
</tr>
<tr>
<td></td>
<td>Minimise reverbation levels</td>
</tr>
<tr>
<td></td>
<td>Assistive listening devices:</td>
</tr>
<tr>
<td></td>
<td>– Personal FM systems</td>
</tr>
<tr>
<td></td>
<td>– Classroom FM systems</td>
</tr>
<tr>
<td>Auditory training</td>
<td>Formal:</td>
</tr>
<tr>
<td></td>
<td>– Earobics</td>
</tr>
<tr>
<td></td>
<td>– Fast ForWord</td>
</tr>
<tr>
<td></td>
<td>– Test driven auditory training in clinic</td>
</tr>
<tr>
<td></td>
<td>Informal:</td>
</tr>
<tr>
<td></td>
<td>– Vowel/consonant training</td>
</tr>
<tr>
<td></td>
<td>– Auditory directive tasks</td>
</tr>
<tr>
<td></td>
<td>– “Simon” game</td>
</tr>
<tr>
<td>Linguistic strategies</td>
<td>Vocabulary building</td>
</tr>
<tr>
<td>Cognitive strategies</td>
<td>RIDER: Read, make an Image, Describe image, Evaluate for completeness, Repeat for next sentence</td>
</tr>
</tbody>
</table>

Table 4 Management strategies for APDs
well documented in relation to certain syndromes, in other disorders the quality of existing evidence is inconclusive and the relation of APD to the coexisting disorder is poorly understood. Further research into the interface between APD and neurological and developmental disorders is needed. Clear insight into the nature of the auditory processing deficit may have implications for appropriate management, in agreement with the trend to provide multimodal intervention for these disorders. Moreover, a detailed understanding of the structural and functional substrate of auditory processing disorders will enable phenotypic evaluation specifically for the purposes of genetic research.

Aetiology and clinical presentations of auditory processing disorders—a review

D-E Bamiou, F E Musiek and L M Luxon

Arch Dis Child 2001 85: 361-365
doi: 10.1136/adc.85.5.361

Updated information and services can be found at:
http://adc.bmj.com/content/85/5/361

These include:

References
This article cites 42 articles, 3 of which you can access for free at:
http://adc.bmj.com/content/85/5/361#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Clinical genetics (49)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/