The management of fever and petechiae: collaborative studies are needed

EDITOR,—We were interested to read Brogan and Rafles collaborative studies are needed The management of fever and petechiae: Making sense of rash decisions. We propose that the use of rash decision making is widespread and a failure of a clinician to consider the evidence to support or reject such decisions should be considered as significant fever.


Figure 1

Fever and petechial rash

1. Yes

2. No

Purpura? (>3 mm)

1. Yes

2. No

Unwell? (Meningism)

1. Yes

2. No

Mechanical explanation? (SVC distribution after cough/vomit or Local trauma)

1. Yes

2. No

Rash progressing?

1. Yes

2. No

Treat underlying illness

1. Yes

2. No

Treat MCD

IV Antibiotics

PCR meningococcal PCR

Sero1 meningococcal serology

T/S throat swab for meningococcal respiratory rate

Platelets

MCD meningococcal disease

Coagulation screen

PCR meningococcal PCR

Sero1 meningococcal serology

T/S throat swab for meningococcal respiratory rate

Platelets

Observation 4-6 hours

1. Registrar review

2. If no purpura, remains well, non-progressive rash, WBC 5–15

3. Consider discharge

4. If not admitted and consider treatment

Abnormal pleural

1. Yes

2. No

Check FBC, Coag, Bid culture, CRP

Treat as MCD

FBC, Coag, Bid culture, CRP, PCR, Serol, T/S

Treat underling illness

Yes

No

Check FBC, Coag, Bid culture, CRP

Check FBC, Coag, Bid culture, CRP

No

Observe 4-6 hours

Rash? Yes

No

Check FBC, Coag, Bid culture, CRP

Mechanical explanation? (SVC distribution after cough/vomit or Local trauma)

Observation 4-6 hours

Registrar review

If no purpura, remains well, non-progressive rash, WBC 5–15

Consider discharge

If not admitted and consider treatment

Abnormal pleural

Check FBC, Coag, Bid culture, CRP

Figure 1

The management of fever and petechiae: collaborative studies are needed

EDITOR,—We were interested to read Brogan and Rafles audit of the management of fever and petechiae. This is an important audit for many general paediatricians in the UK. In Newcastle 36% of children with petechiae were treated with antibiotics, and only 10% had meningococcal disease (MCD). Brogan and Rafles correctly state that more studies are required to validate their proposed guideline. We offer two such studies:

1. Previous international studies do not support a temperature of >37.4°C as an inclusion criterion of significant fever for significant bacterial sepsis (SBS). A minimum temperature of 38°C for 0–2 month old and 39°C for 3–36 month old children is recognised as an indicator of SBS. Hyperthermia may also be significant. In children older than 3 years, the highest recorded temperature of 40°C or more, in association with other parameters, may be more significant. Interestingly, in their own series, 4 out of 5 children with SBS had temperatures of 38.9–40.4°C. We propose that a temperature of at least 38°C should be considered as significant fever.

2. Lethargy has been mentioned as one of the diagnostic criteria of SBS. As a diagnostic criterion, it should be defined more objectively rather than as proposed by the authors. It may be defined as “a level of consciousness characterised by poor or absent eye contact or as the failure of a child to recognise parents or caregivers or to interact with persons or objects in the environment.”

3. Although we fully agree with the cautious interpretation of total white blood cell count in relation to serious sepsis, we would like to mention the importance of absolute neutrophil count (ANC) more than 10 000/μL, especially in pneumococcal and to some extent in meningococcal sepsis. ANC of more than 10 000 has 76% sensitivity, 78% specificity, and 99.2% negative predictive value in pneumococcal sepsis.

4. The term toxic needs to be defined as a clinical picture consistent with a varied constellation of lethargy, poor perfusion, or...
marked hypoxaemia.1 We therefore suggest that the side effect of significant bacterial sepsis should be modified from ILL to ILLNESS: Irritability, Lethargy, Low capillary refill, Neutropenia, Elevated (or low) temperature suggests Significant Sepsis.

S MUKHERJEE
L PATEL
Paediatrics, Department of Child Health, Booth Hall Children's Hospital, Manchester, UK

Correspondence to: Dr Mukherjee.

Samundra.Surangama@ukgatway.net


EDITOR—The accurate diagnosis of meningococcal disease is important, not only for the welfare of the patient, but also for the implementation of appropriate public health measures. Brogan and Raffles have made a useful contribution to more reliable diagnosis.1 However, I feel that their finding of 9% could represent a falsely low proportion of children with serious bacteraemia because of potential recruitment bias and measurement bias. Knowing that children would not be given antibiotics if entered into the study, unless they met the ILL criteria or had a raised white cell count or C reactive protein, may have led admitting doctors to exclude some children that they felt uneasy about observing. This could easily have been achieved by describing the rash as >2mm for instance (it is not stated whether the rash was measured or judged by eye). Secondly, it is questionable whether they had discovered all the bacteraemias. Blood culture, or remaining well after discharge, could miss bacteraemia in those children treated with antibiotics before admission or given a short course in hospital. PCR would have been a useful additional diagnostic test.

This study is a useful first step but, as the authors say, needs to be followed up with a prospective trial. The recruiters and assessors of the children to the study are not the managing clinicians, and the diagnosis of bacteraemia is more thoroughly sought. This is important to validate the diagnostic technique and also the positive predictive value of the combination of petechiae and fever.

PETER DAVIDSON
Specialist Registrar in Public Health Medicine, Portsmouth and South East Hampshire Health Authority, UK
petehdar@aol.com


EDITOR—Although studies on children with petechiae who appear clinically unwell are important, the management of such children should pose few dilemmas in deciding to treat for presumed sepsis. A more challenging group is those with petechiae who appear to be well. We feel this group generates anxiety for clinicians who worry about missing occult or early sepsis. To address this question, we retrospectively identified from a 1 year period, all children who presented with petechiae to two children's departments.

We wanted to focus in particular on well, febrile children with petechiae of unknown cause. Therefore, unlike Brogan and Raffles, we excluded those at the time of presentation thought to have clinical sepsis, those with idiopathic thrombocytopenic purpura or Henoch- Schonlein purpura and those with suspected non-accidental injury. We also excluded febrile children but, unlike Brogan and Raffles, we defined fever as a temperature of 38°C or more (in accordance with the study of Mandl et al,1 the largest prospective study to date on the incidence of sepsis associated with petechiae).

Thirty one, well, febrile children with petechiae were identified. Each had comments in their notes like “appears well” and the diagnosis for each was “viral illness”, plus or minus causative factors for petechiae. In addition, objective criteria such as pulse oximetry, capillary refill time, and blood pressure were all normal. Having identified this cohort, we reviewed laboratory data and outcome for each child.

Ten children were less than one year, 10 between one and three years, and 11 over five years. Nineteen had blood cultures done—all negative. Nine of these also had meningococcal PCR done—all negative. Of the 12 without blood cultures, 1 had meningococcal PCR done, which was negative. Twenty seven had full blood counts—3 showed an elevated white cell count and none had low white cell counts. Nineteen had C reactive protein measured, 9 of which were elevated. Twelve children were admitted—all remained well (despite this, 9 were given antibiotics, which were discontinued after 48 hours). Nineteen were discharged, having received no antibiotics. As far as we can see, no children subsequently developed clinical sepsis. The results of this study show us keeping with those of Mandl et al,1 who found the incidence of clinical sepsis among (febrile) children with petechiae, who appeared well at the time of presentation, to be nil.

Furthermore, our study shows that management of well children with petechiae is highly variable. Lack of consensus among paediatricians on the management of petechial rashes has been well documented.1 In our own department, we are considering implementation of the following guidelines for the management of well, febrile children with petechiae, although we acknowledge that larger prospective studies are required:

1. That staff are trained to observe in the emergency department for 4–6 hours and if they remain clinically well and adequate, discharge without antibiotics would be safe.

2. Laboratory investigation is probably unnecessary, unless indicated to exclude ITP.

Malcolm Jones
Stephen Goldring
Formerly SHOs in Paediatric A&E, University Hospital, Leicester, UK

TINA SAJANJHAR
Consultant in paediatric A&E, University Hospital, Leicester, UK

Correspondence to: Malcolm Jones, Department of Community Child Health, St George's Hospital, Blackshaw Road, London SW17 0QT. malcolm.jones@doctors.org.uk

PAUL A BROGAN
Institute of Child Health, London, UK
PBrogan@ich.ucl.ac.uk


Methodology for assessing patterns of interstitial pneumonia in children

EDITOR—The report of Hacking et al,1 of a series of infants with very early onset interstitial lung disease (ILD) with good prognosis, is of great clinical interest but sadly represents a lost investigative opportunity.

Firstly, their statement that percutaneous open lung biopsy has fewer side effects than open lung biopsy (OLB) is not supported by any direct comparative trial, and cannot be allowed to stand. Indeed, the largest published series using this technique was heavily criticised both for the number of complications and the often non-diagnostic samples obtained.1 By contrast OLB is safe,2 permits direct inspection of the site of biopsy, and allows the acquisition of specimens large.
enough to determine the lung architecture in order more precisely to classify the different types of paediatric ILD. OLB thus allows appreciation of the distribution of disease involvement within the acinus, allowing more precise identification of different histopathological patterns. There is therefore no reason to favour percutaneous biopsy over OLB in skilled hands; indeed the weight of evidence is in favour of OLB. Secondly, their selected nomenclature of paediatric ILD is open to criticism. It is questionable whether the use of term “idiopathic pulmonary fibrosis (IPF)” is still appropriate in children. IFP is generally used synonymously with لو çık vignettes fibrosing alveolitis, which in adults is most often represented histopathologically by the pattern of “usual interstitial pneumonia (UIP)”. However UIP is rarely if ever seen in children; much more common are lymphocytic interstitial pneumonia (LIP), desquamative interstitial pneumonia (DIP), non-specific interstitial pneumonia (NSIP), and chronic pneumonitis of infancy. Identifying these histological patterns may point towards specific investigations with regard to aetiology, and may also provide prognostic and treatment data, and we consider that it is a pity that this or a similar histopathological classification was not used in this report.

We suggest that more will be learned about these rare conditions if diagnostic precision is maximised by comparison of pre-biopsy computed tomography with properly classified histological findings.1 Interdisciplinary collaboration is needed to achieve this, and it is unfortunate that more details of imaging and an up to date classification of histology were not included in an otherwise informative paper.

ANDREW G NICHOLSON
Consultant Histopathologist, Royal Brompton and Harefield NHS Trust, Royal Brompton Hospital, London SW3 6NY, UK; a.nicholson@rbh.thames.nhs.uk

ANDREW BUSH
Reader and Honorary Consultant in Paediatric Respiratory, Royal Brompton and Harefield NHS Trust, UK


Dr Hacking et al respond

EDITOR.—In their response to our article, Nicholson and Bush suggest that an investigative opportunity has been missed. We do not agree. These authors have repeated their previously reported criticism of percutaneous lung biopsy (PLB)1 and have suggested that this technique is prone both to more complications and to a greater number of non-diagnostic samples. We have shown that PLB in a series of nine patients was adequate for diagnosis in all cases and did not result in pneumothoraces significant enough to require thoracocentesis.1 In our present report of 11 patients, PLB was not associated with any major complications and failed to provide a histological diagnosis in only one patient. This compares favourably to Nicholson and Bush’s own report of open lung biopsy (OLB) in 27 cases where three patients experienced significant complications—that is, a pneumothorax, a haemothorax, and a pleural space infection.2 Moreover, five previously self ventilating patients required ventilation after biopsy, and five patients returned from biopsy with a chest drain which had been inserted in the course of the procedure. We do not agree that OLB is superior to PLB.

Nicholson and Bush go on to question the nomenclature of paediatric idiopathic pulmonary fibrosis and briefly describe the histological classifications of usual pneumonia (UIP) and diffuse interstitial pneumonia (DIP) as we did in the introduction to our article. They suggest the “these histological patterns may . . . provide prognostic and treatment data”. However, the distinction between UIP and DIP is questionable,2 as they may represent different stages in the same disease process.2 In common with previous reports,2 we have shown that the severity of histological change did not relate to patient’s response to steroids or their eventual outcome.

We agree with Nicholson and Bush when they state that “diagnostic precision is maximised by comparison of pre-biopsy computed tomography with properly classified histological findings” as this was practised throughout our series. We fear that they have missed the most important aspect of our report which is that idiopathic pulmonary fibrosis in children has a diverse natural history and a variable prognosis that can be favourable. The good prognosis seen in our series is different from previous case reports indicating a greater than 50% mortality.3

DOUG HACKING
ROXALIND SMITH
NIGEL SHAW
GEORGE KOKAI
HELEN CARTY
DAVID HEAF
Dr D Hacking, Paediatric Specialist Registrar, Department of Paediatrics, Wexham Park Hospital, Slough, UK (hackandmack@wclial.net).


Medication errors are NOT uncommon

EDITOR.—We welcome the coverage given to the major, and potentially fatal, problem of medication errors within managed health care. We disagree, however, with the key message that medication errors are uncommon. They are endemic, extremely common, overlooked and often ignored.

Observational studies of medicine administration within hospitals in the UK report an error rate of 3% to 8%.4 In contrast, Ross et al report 195 errors, collated from a mandatory error reporting policy, in 65 months.2 While mandatory reporting is a commendable principle, the reality remains that the majority of healthcare professionals will not report errors, and the majority of medication errors, will not be reported.

Reasons for lack of reporting by nursing staff include confusion regarding the definition of drug errors and the appropriate action to take when they occurred, fear of disciplinary action, loss of clinical confidence and variation in managerial response.3

Voluntary, non-punitive error reporting programmes have been advocated as the most effective way to promote candid disclosure of medical error.5 Unless we are aware of what errors occur, we cannot expect to implement an appropriate system fix.

We suggest that the occurrence of three errors/month, represents a tremendous underreporting of the extent of medication error.7 If patient through put totalled 335 835 patient bed days, and we assume that each day the average patient received 6 doses of medicine, an error rate of 5%, suggests that a more realistic interpretation of the extent of the error iceberg is an incidence of greater than 100 000.

The conclusion therefore that medication errors are uncommon is unfortunately not true. The reality is that reported medication errors are uncommon.

NEIL A CALDWELL
Principal Pharmacist/Lecturer, Wirral Hospital NHS Trust/Liverpool John Moores University, UK; neil.caldwell@ccmail.wirralh-tr.nwest.nhs.uk

DON K HUGHES
Principal Pharmacist/Honorary Lecturer, Clinical Services, Wirral Hospital NHS Trust/Liverpool John Moores University


Dr Ross responds

EDITOR.—We welcome the debate stimulated by our paper. Indeed, this was our aim in publishing it. We agree with Mr Caldwell that a degree of under reporting is likely. Our system provides a clear definition to all staff of what constitutes a reportable medication error (listed in the appendix). It does not include errors that are averted—such as, misprescribed errors corrected by pharmacists before dispensing. We also noted that error reporting rates vary widely in the literature. We discussed some of the reasons advanced to explain such variations—for example, whether the reporting system is mandatory or voluntary, and the intensity of the search for errors. However, the published evidence about medication error rates in paediatric settings is very limited especially in the context of a nationally funded, universal, health care system like the NHS. There is, therefore, little firm paediatric evidence to support Mr Caldwell's hypothesis that errors are “...extremely common, overlooked and often ignored.”

In our experience, most reported errors were minor. Serious events with adverse outcomes were uncommon and, we think, are unlikely not to be reported. If anything, we would suspect that minor errors are those most likely to go unrecorded. This may be of considerable importance if analysis of minor events highlights system problems whose correction might help avoid future serious incidents.

Mr Caldwell suggests that voluntary systems may increase error reporting. It needs to be recognised that voluntary systems are not a panacea but may also detect only a fraction of overall errors. Again, we would suspect that minor errors might be those most likely to be missed. The thrust of the editorial by Cohen seems to relate to errors with serious adverse outcomes.1 There are also some potential difficulties with voluntary systems. For example, how we do we ensure that parents are notified about error occurrence if reporting is voluntary? What happens about errors of such seriousness that issues of criminal negligence arise? Whether a reporting system is mandatory or voluntary is probably less important than that the system is non-punitive. This is borne out by the findings of Vincer and colleagues2 who found an approximately four to six fold increase in error reporting when the punitive aspects of the form were reduced by making it “a bad thing”. We have no doubt that the critical challenge for us all is to make the shift from assuming “errors” arise from individual negligence to recognising that “incidents” more usually arise because of systemic organisational failures. We urgently need to move away from a culture of fixing the blame towards one of recognising and fixing the problem.

LINDA ROSS
Department of Child Health, University of Glasgow, UK
lindaross@gm.co.uk


BOOK REVIEWS


When teaching about children with neurological disability or when advising their parents or when, wearing an editorial hat, advising on publishability, the feedback I receive consistently includes requests for “how to do it”. Responding usefully to these requests is challenging.

What a pleasure it has been therefore to have made available to me for review, the Chailey approach to postural management. Chailey Heritage Clinical Services is an NHS provision that works in conjunction with the independent Chailey Heritage School. The authors of this manual are a physiotherapist, two occupational therapists, and a consultant in paediatric rehabilitation. They have taken as their remit to provide an explanation of the theoretical aspects of posture management and thereafter its practical application through treatment and equipment. Active Design Ltd, the publisher of this manual, develops and manufactures the equipment detailed in this publication. What is provided within it are sections describing posture; a detailed exposition of assessment based upon the Chailey levels of ability; a good section on the relevant knowledge base, including discussion on subjects as diverse as biomechanics and motor learning theory; and helpful descriptions of assessment and putting theory into practice. Having read through the volume as a textbook I consider that I have acquired some useful understanding of postural management.

This, however, is not the book’s main strength. Rather, it has been prepared and bound as a bench manual, and its whole approach is one of practical instruction. Within that context, I have no doubt that it would be most useful as an accomplishment to attending a series of workshops and practical demonstrations given by the authors. Used in its own right as a training manual, I have major doubts that the very direct teaching style might limit the attentional capacity of readers, the majority of whom are likely to be therapists with significant experience in this field. I nevertheless recommend this manual as one that should be both available and used in centres offering multidisciplinary services for children with disabilities.

L. ROSENBLoom
Consultant Paediatric Neurologist, Alder Hey Children’s Hospital, UK


If I was a betting man, and one could bet on such matters, I would stake the price of a new stethoscope that chicken pox has become an altogether less serious matter than in a children. This story is set to run and run, with no easy bets on global eradication.

ADAM FINN
Professor of Paediatric Neurology, University of Bristol, UK

www.archdischild.com
Varicella-zoster virus.

ADAM FINN

Arch Dis Child 2001 85: 175
doi: 10.1136/adc.85.2.175a

Updated information and services can be found at:
http://adc.bmj.com/content/85/2/175.2

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
ADC Book reviews (154)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/