LETTERS TO THE EDITOR

Rapid responses
If you have a burning desire to respond to a paper published in ADC or F&G, why not make use of our “rapid response” option?

Log on to our website (www.archdischild.com), find the paper that interests you, click on “full text” and send your response by email by clicking on “submit a response”.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eletters” on our homepage.

The editors will decide, as before, whether to also publish it in a future paper issue.

The management of fever and petechiae: collaborative studies are needed

EDITOR,—We were interested to read Brogan and Raflā's audit of the management of fever and petechiae.1 This is an important audit for many general paediatricians in the UK. In Newcastle 36% of children with petechiae were treated with antibiotics, and only 10% had meningococcal disease (MCD). Brogan and Raflā correctly state that more studies are required to validate their proposed guideline. We offer two such studies:

(1) The ILL criteria (irritability, lethargy, low capillary refill) were applied retrospectively to a cohort of children presenting with petechiae who were part of a multicentre prospective study of MCD from Merseyside, UK.1 The ILL criteria would have identified all except two of 66 children with MCD and petechiae. Both those not identified presented with seizures, one had meningism, the other a maculopapular rash. However, the ILL criteria were also present in 62 of 65 children with petechiae initially thought to have MCD, whose final diagnosis was a viral illness. In this cohort the features that suggested MCD were tachypnoea or signs of illness. In this cohort the features that suggested MCD were tachypnoea or signs of illness. In this cohort the features that suggested MCD were tachypnoea or signs of illness. In this cohort the features that suggested MCD were tachypnoea or signs of illness.

The ILL criteria are therefore of limited use in children already suspected of having MCD.

Local paediatricians in training asked for an algorithm to help assess children with fever and petechiae. We therefore designed an algorithm which includes risk factors from previous studies (recently reviewed),1 the ILL criteria, the criteria from the above Merseyside study, and a period of observation. We introduced this algorithm into routine use in our hospitals this year. We are prospectively validating its use.

(2) During the first three months, 49 children presented with petechiae. Only one child had meningococcal disease. The algorithm was correctly followed in 34 (68%) children; this included prompt treatment for the child with MCD. For 15 children the algorithm was not followed; 7 were given antibiotics when not indicated, 8 were not treated when the algorithm suggested they should be. It is obviously vitally important that antibiotics are not withheld from children with possible MCD. When paediatricians suspect MCD, they should give prompt antibiotic treatment and then seek to confirm the diagnosis.

Any algorithm for the management of children with fever and petechiae must be shown to be clinically valid. A large number of cases will be needed to show our algorithm is safe and effective. This requires collaboration between a number of centres. Any centre wishing to help validate our algorithm would be welcome to do so: please contact one of the authors.

CHRIS RICHARDS
ANSGAR THIMM
Royal Victoria Infirmary, Newcastle, UK

JULIA CLARK
Newcastle General Hospital, Newcastle, UK

ALISTAIR PJ THOMSON
Leighton Hospital, Crewe, UK

TINA NEWTON
F ANDREW I RIORAN
Birmingham Heartlands Hospital, Birmingham, UK

Correspondence to: F Andrew, I Riordan, Consultant Paediatrician, Birmingham Heartlands Hospital, UK (a.riordan@kippers-korner.demon.co.uk)


Replies

EDITOR,—We read with interest the study and recommendations by Brogan and Raflās.1 We agree with them on a number of issues and wish to draw attention to the following points.

(1) Previous international studies do not support a temperature of >37.4°C as an inclusion criterion of significant fever for significant bacterial sepsis (SBS).2,3 A minimum temperature of 38°C for 0–2 month old and 39°C for 3–36 month old children is recognised as an indicator of SBS. Hypothermia may also be significant. In children older than 3 years, the highest recorded temperature of 40°C or more, in association with other parameters, may be more significant. Interestingly, in their own study, 4 out of 5 children with SBS had temperatures of 38.9–40.4°C. We propose that a temperature of at least 38°C should be considered as significant fever.

(2) Lethargy has been mentioned as one of the diagnostic criteria of SBS. As a diagnostic criterion, it should be defined more objectively rather than as proposed by the authors. It may be defined as “a level of consciousness characterised by poor or absent eye contact or as the failure of a child to recognise parents or caregivers or to interact with persons or objects in the environment.”4

(3) Although we fully agree with the cautious interpretation of total white blood cell count in relation to serious sepsis, we would like to mention the importance of absolute neutrophil count (ANC) more than 10 000/µl, especially in pneumococcal and to some extent in meningococcal sepsis. ANC of more than 10 000 has 76% sensitivity, 78% specificity, and 99.2% negative predictive value in pneumococcal sepsis.5

(4) The term toxic needs to be defined as a clinical picture consistent with a varied constellation of lethargy, poor perfusion, or

Figure 1

www.archdischild.com

172 Arch Dis Child 2001;85:172–175

Downloaded from http://adc.bmj.com/ on December 23, 2017 - Published by group.bmj.com
marked hypo/hyperventilation. We therefore suggest that the side effects of some bacterial sepsis should be modified from ILL to ILLNESS: Irritability, Lethargy, Low capillary refill, Neutropenia/Neutrophilia, Elevated (or low) temperature suggests Significant Sepsis.

S MUKHERJEE
L PATEL
Paediatrics, Department of Child Health, Booth Hall Childrens Hospital, Manchester, UK

Correspondence to: Dr Mukherjee.
Samudra.Surangama@ukgateway.net

EDITOR,—Although studies on children with petechiae and fever have made a useful contribution to more reliable diagnosis. However, I feel that their finding of 9% could represent a falsely low proportion of children with serious bacteraemia because of potential recruitment bias and measurement bias. Knowing that children would not be given antibiotics if entered into the study, unless they met the ILL criteria or had a raised white cell count or C reactive protein, may have led admitting doctors to exclude some children that they felt uneasy about observing. This could easily have been achieved by describing the rash as >2mm for instance (it is not stated whether the rash was measured or judged by eye). Secondly, it is questionable whether they had discovered all the bacteraemias. Blood culture, or remaining well after discharge, could miss bacteraemia in those children treated with antibiotics before admission or given a short course in hospital. PCR would have been a useful additional diagnostic test.

This study is a useful first step but, as the authors say, needs to be followed up with a prospective trial. The recruiters and assessors of the children to the study are not the managing clinicians, and the diagnosis of bacteraemia is more thoroughly sought. This is important to validate the diagnostic technique and also the positive predictive value of the combination of petechiae and fever.
PETER DAVIDSON
Specialist Registrar in Public Health Medicine, Portsmouth and South East Hampshire Health Authority, UK
peterdav@aad.com


EDITOR,—The accurate diagnosis of meningococcal disease is important, not only for the welfare of the patient, but also for the implementation of appropriate public health measures. Brogan and Raﬀles have made a useful contribution to more reliable diagnosis. However, I feel that their finding of 9% could represent a falsely low proportion of children with serious bacteraemia because of potential recruitment bias and measurement bias. Knowing that children would not be given antibiotics if entered into the study, unless they met the ILL criteria or had a raised white cell count or C reactive protein, may have led admitting doctors to exclude some children that they felt uneasy about observing. This could easily have been achieved by describing the rash as >2mm for instance (it is not stated whether the rash was measured or judged by eye). Secondly, it is questionable whether they had discovered all the bacteraemias. Blood culture, or remaining well after discharge, could miss bacteraemia in those children treated with antibiotics before admission or given a short course in hospital. PCR would have been a useful additional diagnostic test.

This study is a useful first step but, as the authors say, needs to be followed up with a prospective trial. The recruiters and assessors of the children to the study are not the managing clinicians, and the diagnosis of bacteraemia is more thoroughly sought. This is important to validate the diagnostic technique and also the positive predictive value of the combination of petechiae and fever.
PETER DAVIDSON
Specialist Registrar in Public Health Medicine, Portsmouth and South East Hampshire Health Authority, UK
peterdav@aad.com


EDITOR,—The accurate diagnosis of meningococcal disease is important, not only for the welfare of the patient, but also for the implementation of appropriate public health measures. Brogan and Raﬀles have made a useful contribution to more reliable diagnosis. However, I feel that their finding of 9% could represent a falsely low proportion of children with serious bacteraemia because of potential recruitment bias and measurement bias. Knowing that children would not be given antibiotics if entered into the study, unless they met the ILL criteria or had a raised white cell count or C reactive protein, may have led admitting doctors to exclude some children that they felt uneasy about observing. This could easily have been achieved by describing the rash as >2mm for instance (it is not stated whether the rash was measured or judged by eye). Secondly, it is questionable whether they had discovered all the bacteraemias. Blood culture, or remaining well after discharge, could miss bacteraemia in those children treated with antibiotics before admission or given a short course in hospital. PCR would have been a useful additional diagnostic test.

This study is a useful first step but, as the authors say, needs to be followed up with a prospective trial. The recruiters and assessors of the children to the study are not the managing clinicians, and the diagnosis of bacteraemia is more thoroughly sought. This is important to validate the diagnostic technique and also the positive predictive value of the combination of petechiae and fever.
PETER DAVIDSON
Specialist Registrar in Public Health Medicine, Portsmouth and South East Hampshire Health Authority, UK
peterdav@aad.com


EDITOR,—The accurate diagnosis of meningococcal disease is important, not only for the welfare of the patient, but also for the implementation of appropriate public health measures. Brogan and Raﬀles have made a useful contribution to more reliable diagnosis. However, I feel that their finding of 9% could represent a falsely low proportion of children with serious bacteraemia because of potential recruitment bias and measurement bias. Knowing that children would not be given antibiotics if entered into the study, unless they met the ILL criteria or had a raised white cell count or C reactive protein, may have led admitting doctors to exclude some children that they felt uneasy about observing. This could easily have been achieved by describing the rash as >2mm for instance (it is not stated whether the rash was measured or judged by eye). Secondly, it is questionable whether they had discovered all the bacteraemias. Blood culture, or remaining well after discharge, could miss bacteraemia in those children treated with antibiotics before admission or given a short course in hospital. PCR would have been a useful additional diagnostic test.

This study is a useful first step but, as the authors say, needs to be followed up with a prospective trial. The recruiters and assessors of the children to the study are not the managing clinicians, and the diagnosis of bacteraemia is more thoroughly sought. This is important to validate the diagnostic technique and also the positive predictive value of the combination of petechiae and fever.
PETER DAVIDSON
Specialist Registrar in Public Health Medicine, Portsmouth and South East Hampshire Health Authority, UK
peterdav@aad.com

enough to determine the lung architecture in order more precisely to classify the different types of paediatric ILD. OLB thus allows appreciation of the distribution of disease involvement within the acinus, allowing more precise identification of different histopathological patterns. There is therefore no reason to favour percutaneous biopsy over OLB in skilled hands; indeed the weight of evidence is in favour of OLB. Secondly, their selected nomenclature of percutaneous ILD is open to criticism. It is questionable whether the use of term “idiopathic pulmonary fibrosis (IPF)” is still appropriate in children. IPF is generally used synonymously with lymphocytic fibrosing alveolitis, which in adults is most often represented histopathologically by the pattern of “usual interstitial pneumonia (UIP)”. However UIP is rarely if ever seen in children; much more common are lymphocytic interstitial pneumonia (LIP), desquamative interstitial pneumonia (DIP), non-specific interstitial pneumonia (NSIP), and chronic pneumonitis of infancy. Identifying these histological patterns may point towards specific investigations with regard to aetiology, and may also provide prognostic and treatment data, and we consider that it is a pity that this or a similar histopathological classification was not used in this report.

We suggest that more will be learned about these rare conditions if diagnostic precision is maximised by comparison of pre-biopsy computed tomography with properly classified histological findings. Interdisciplinary collaboration is needed to achieve this, and it is unfortunate that more details of imaging and an up to date classification of histology were not included in an otherwise informative paper.

ANDREW G NICHOLSON
Consultant Histopathologist,
Royal Brompton and Harefield NHS Trust,
Royal Brompton Hospital, London SW3 6NY, UK,
a.nicholson@rbh.nthames.nhs.uk

ANDREW BUSH
Reader and Honorary Consultant in Paediatric Respiratory,
Royal Brompton and Harefield NHS Trust,
UK


Dr Hacking et al respond

EDITOR,—In their response to our article, Nicholson and Bush suggest that an investigate opportunity has been missed. We do not agree. These authors have repeated their previously reported criticism of percutaneous lung biopsy (PLB) and have suggested that this technique is prone both to more complications and to a greater number of non-diagnostic samples. We have shown that PLB in a series of nine patients was adequate for diagnosis in all cases and did not result in pneumothoraces significant enough to require thoracocentesis. In our present report of 11 patients, PLB was not associated with any major complications and failed to provide a histological diagnosis in only one patient. This compares favourably to Nicholson and Bush’s own report of open lung biopsy (OLB) in 27 cases where three patients experienced significant complications—that is, a pneumothorax, a haemothorax, and a pleural space infection. Moreover, five previously self ventilating patients required ventilation after biopsy, and five patients returned from biopsy with a chest drain which had been inserted in the course of the procedure. We do not agree that OLB is superior to PLB.

Nicholson and Bush go on to question the nomenclature of paediatric idiopathic pulmonary fibrosis and briefly describe the histological classifications of usual pneumonia (UIP) and desquamative interstitial pneumonia (DIP) as we did in the introduction to our article. They suggest the “these histological patterns may . . . provide prognostic and treatment data”. However, the distinction between UIP and DIP is questionable, as they may represent different stages in the same disease process. In common with previous reports, we have shown that the severity of histological change did not relate to patient’s response to steroids or their eventual outcome.

We agree with Nicholson and Bush when they state that “diagnostic precision is maximised by comparison of pre-biopsy computed tomography with properly classified histological findings” as this was practised throughout our series. We fear that they have missed the most important aspect of our report which is that idiopathic pulmonary fibrosis in children has a diverse natural history and a variable prognosis that can be favourable. The good prognosis seen in our series is different from previous case reports indicating a greater than 50% mortality.

DOUG HACKING
ROXALIND SMYTH
NIGEL SHAW
GEORGE KOKAI
HELEN CARTY
DAVID HEAF

Dr D Hacking, Paediatric Specialist Registrar, Department of Paediatrics, Wexham Park Hospital, Slough, UK (hackandmack@wcdial.net).


Medication errors are NOT uncommon

EDITOR,—We welcome the coverage given to the major, and potentially fatal, problem of medication errors within managed health care. We disagree, however, with the key message that medication errors are uncommon. They are endemic, extremely common, overlooked and often ignored.

Observational studies of medicine administration within hospitals in the UK report an error rate of 3% to 8%. In contrast, Ross et al report 185 errors, collated from a mandatory error reporting policy, in 65 months. While mandatory reporting is a commendable principle, the reality remains that the majority of healthcare professionals will not report errors, and the majority of medication errors, will not be reported.

Reasons for lack of reporting by nursing staff include confusion regarding the definition of drug errors and the appropriate action to take when they occurred, fear of disciplinary action, loss of clinical confidence and variation in managerial response.

Voluntary, non-punitive error reporting programmes have been advocated as the most effective way to promote candid disclosure of medical error. Unless we are aware of what errors occur, we cannot expect to implement an appropriate system.

We suggest that the occurrence of three errors/month, represents a tremendous under reporting of the extent of medication error. If patient through put totalled 335 835 patient bed days, and we assume that each day the average patient received 6 doses of medicine, an error rate of 5%, suggests that a more realistic interpretation of the extent of the error iceberg is an incidence of greater than 100 000.

The conclusion therefore that medication errors are uncommon is unfortunately not true. The reality is that reported medication errors are uncommon.

NEIL A CALDWELL
Principal Pharmacist/Lecturer,
Wirral Hospital NHS Trust/Liverpool John Moores University,
UK, neil.caldwell@gmxmail.wirralh-tr.nwest.nhs.uk

DON K HUGHES
Principal Pharmacist/Honorary Lecturer,
Clinical Services, Wirral Hospital NHS Trust/Wirral John Moores University


www.archdischild.com
Dr Ross responds

Editor,—We welcome the debate stimulated by our paper. Indeed, this was our aim in publishing it. We agree with Mr Caldwell that a degree of under reporting is likely. Our system provides a clear definition to all staff of what constitutes a reportable medication error (listed in the appendix). It does not include errors that are averted—such as, misprescribed errors corrected by pharmacists before dispensing. We also noted that error reporting rates vary widely in the literature. We discussed some of the reasons advanced to explain such variations—for example, whether the reporting system is mandatory or voluntary, and the intensity of the search for errors. However, the published evidence about medication error rates in paediatric settings is very limited especially in the context of a nationally funded, universal, health care system like the NHS. There is, therefore, little firm paediatric evidence to support Mr Caldwell’s opposite view that “incidents” more usually us all is to make the shift from assuming an “incident” rather than an “error” form. We believe the form was reduced by making it easier to use. An increase in error reporting when the punitive aspects of the form were reduced by making it easier to use is a panacea but may also detect only a fraction of actual errors. Mr Caldwell suggests that voluntary systems may increase error reporting. It needs to be accepted that voluntary systems are not a panacea but may also detect only a fraction of overall errors. Again, we would suspect that minor errors might be those most likely to be missed. The thrust of the editorial by Cohen seems to relate to errors with serious adverse outcomes. There are also some potential difficulties with voluntary systems. For example, how do we ensure that parents are notified about error occurrence if reporting is voluntary? What happens about errors of such seriousness that issues of criminal negligence arise? Whether a reporting system is mandatory or voluntary is probably less important than that the system is non-punitive. This is borne out by the findings of Vincer and colleagues1 who found an approximately four to six fold increase in error reporting when the punitive aspects of the form were reduced by making it an “incident” rather than an “error” form. We have no doubt that the critical challenge for us all is to make the shift from assuming “errors” arise from individual negligence to recognising that “incidents” more usually arise because of systemic organisational failures. We urgently need to move away from a culture of fixing the blame towards one of recognising and fixing the problem.

LINDA ROSS
Department of Child Health, University of Glasgow, UK
lindaross@gm.co.uk

1 Cohen MR. Why error reporting systems should be voluntary. BJM 2000;320:728-9.

BOOK REVIEWS


When teaching about children with neurological disability or when advising their parents or when, wearing an editorial hat, advising on publishability, the feedback I receive consistently includes requests for information on personal practice and “how to do it”. Responding usefully to these requests is challenging.

What a pleasure it has been therefore to have made available to me for review, the Chailey approach to postural management. Chailey Heritage Clinical Services is an NHS provision that works in conjunction with the independent Chailey Heritage School. The authors of this manual are a physiotherapist, two occupational therapists, and a consultant in paediatric rehabilitation. They have taken as their remit to provide an explanation of the theoretical aspects of posture management and thereafter its practical application through treatment and equipment. Active Design Ltd, the publisher of this manual, develops and manufactures the equipment detailed in this publication. What is provided within it are sections describing posture; a detailed exposition of assessment based upon the Chailey levels of ability; a good section on the relevant knowledge base, including discussion on subjects as diverse as biomechanics and motor learning theory; and helpful descriptions of assessment and putting theory into practice.

Having read through the volume as a textbook I consider that I have acquired some useful understanding of postural management.

This, however, is not the book’s main strength. Rather, it has been prepared and bound as a bench manual and its whole approach is one of practical instruction. Within that context, I have no doubt that it would be most useful as an accomplishment to attending a series of workshops and practical demonstrations given by the authors. Used in its own right as a training manual, I have major doubts that the very directing pedagogic style might limit the attentional capacity of readers, the majority of whom are likely to be therapists with significant experience in this field.

I nevertheless recommend this manual as one that should be both available and used in centres offering multidisciplinary services for children with disabilities.

It would be nice to believe also that future editions of this and similar volumes would be able to illustrate more sophisticated technology than is usually available for children with disabilities.

L ROSENBLOOM
Consultant Paediatric Neurologist, Alder Hey Children’s Hospital, UK


If I were a betting man, and one could bet on such matters, I would stake the price of a new stethoscope that chicken pox will remain an subject of media and thus public (and thus political) interest, at least in the UK. The vaccine—developed twenty five years ago—has been in general use in the USA for around five years and it cannot be long before it finds its way more widely in Europe too. The most likely formulation to find general acceptance in national programmes will be a combination with the existing MMR vaccine and, as at least readers of the Daily Mail will know, the current word on the block is that combining vaccine viruses in this way is “a bad thing”. I have already been interviewed at length by a journalist purporting to be interested in the primary prevention of varicella who then proceeded to publish a piece about an actually non-existent but implicitly fiendish sounding study of MMRV vaccine “going on” under my supervision. So it may be a good time for paediatricians to inform themselves about this common but little discussed infection, which is most commonly acquired in childhood. Right on queue, this opportunity arrives to do so.

It has recently become fashionable in certain circles to assert that various infectious scourges of the past, now gone thanks to immunisation, were actually really rather innocuous (or perhaps even beneficial!) and—in a vaguely contradictory way—that there were fewer ways of dying, however, not thanks to vaccines at all. In the case of varicella the former notion (or at least the first part of it: I’ve not yet heard the assertion that chickenpox, specifically, is good for you) is widely prevalent, despite the continuing ubiquity of the infection. Paediatricians will be aware that such dismissals are misplaced. Not only do their oncology patients, those on steroids and children undergoing transplantation, to name a few, risk severe illness or rapid death following exposure to varicella, but many more healthy children develop common but unpleasant complications of varicella such as bacterial cellulitis, and a few more serious ones, such as ataxia or purpura fulminans. To be sure, many children are little troubled by primary infection, like my youngest son whose three lesions, which appeared while he remained entirely well and were dismissed as minor bites by me, were deroofed and diagnosed by my non-medical wife. Some of these folk might be glad to be without residual facial scars but, among those many infected but hardly touched by varicella-zoster virus in childhood, there are those whose later lives will be blighted by zoster and post-herpetic neuralgia—a growing problem with rising longevity.

This monograph is timed to give an account of the enormous recent advances in understanding of the pathogenesis of human infection with this herpes virus and of the availability of tools with which to treat, attenuate, and prevent infection. But it also points out that the tale remains far from over:

It has recently become fashionable in certain circles to assert that various infectious scourges of the past, now gone thanks to immunisation, were actually really rather innocuous (or perhaps even beneficial!) and—in a vaguely contradictory way—that there were fewer ways of dying, however, not thanks to vaccines at all. In the case of varicella the former notion (or at least the first part of it: I’ve not yet heard the assertion that chickenpox, specifically, is good for you) is widely prevalent, despite the continuing ubiquity of the infection. Paediatricians will be aware that such dismissals are misplaced. Not only do their oncology patients, those on steroids and children undergoing transplantation, to name a few, risk severe illness or rapid death following exposure to varicella, but many more healthy children develop common but unpleasant complications of varicella such as bacterial cellulitis, and a few more serious ones, such as ataxia or purpura fulminans. To be sure, many children are little troubled by primary infection, like my youngest son whose three lesions, which appeared while he remained entirely well and were dismissed as minor bites by me, were deroofed and diagnosed by my non-medical wife. Some of these folk might be glad to be without residual facial scars but, among those many infected but hardly touched by varicella-zoster virus in childhood, there are those whose later lives will be blighted by zoster and post-herpetic neuralgia—a growing problem with rising longevity.

This monograph is timed to give an account of the enormous recent advances in understanding of the pathogenesis of human infection with this herpes virus and of the availability of tools with which to treat, attenuate, and prevent infection. But it also points out that the tale remains far from over:
Medication errors are NOT uncommon

NEIL A CALDWELL and DON K HUGHES

Arch Dis Child 2001 85: 172
doi: 10.1136/adc.85.2.172c

Updated information and services can be found at:
http://adc.bmj.com/content/85/2/172.4

These include:

References
This article cites 4 articles, 2 of which you can access for free at:
http://adc.bmj.com/content/85/2/172.4#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/