Increased urinary leukotriene E₄ during febrile attacks in the hyperimmunoglobulinaemia D and periodic fever syndrome

J Frenkel, M A A P Willemsen, C M R Weemaes, L Dorland, E Mayatepek

Abstract

Background—The hyperimmunoglobulinaemia D and periodic fever syndrome is a hereditary periodic fever, caused by deficiency of the enzyme mevalonate kinase. It is unclear how this defect leads to recurrent fever episodes.

Aim—To assess the involvement of cysteinyl leukotrienes in the pathogenesis of fever attacks as reflected by urinary leukotriene E₄ (LTE₄) excretion.

Methods—Urinary LTE₄ was measured in seven patients while febrile and afebrile.

Results—LTE₄ was raised during fever in all subjects (46–199 nmol/mol creatinine, mean 92; normal <40). Urinary LTE₄ was normal between attacks, as well as in normal children with fever as a result of miscellaneous causes.

Conclusion—Our results suggest that cysteinyl leukotrienes play a role in the pathophysiology of this disorder. No effective treatment is yet available, leukotriene receptor antagonists might offer a new therapeutic approach for patients with the hyperimmunoglobulinaemia D and periodic fever syndrome.

Keywords: cysteinyl leukotrienes; leukotriene E₄; mevalonate kinase; periodic fever; immunoglobulin D

Dutch type periodic fever (MIM#260920), also known as the hyperimmunoglobulinaemia D syndrome (HIDS), is an autosomal recessive disorder, characterised by febrile attacks recurring at more or less regular intervals and the presence of an increased serum IgD concentration. Temperature typically rises abruptly, remaining continuously increased for three to six days. Febrile episodes recur every two to eight weeks from infancy. During these attacks patients often complain of malaise, chills, headache, arthralgias, nausea, vomiting, diarrhoea, and abdominal pain. The affected children often have striking cervical lymphadenopathy and may have splenomegaly, hepatomegaly, anaemia, and a variety of skin rashes. In the patient’s blood, markers of inflammation such as white cell counts, erythrocyte sedimentation rate, and serum concentrations of several proinflammatory cytokines, are raised during febrile episodes, and the urine concentration of neopterin is acutely raised. Mutations in the MVK gene, which encodes mevalonate kinase, have been identified as the underlying genetic defect. These mutations lead to a substantially reduced activity of mevalonate kinase, a key enzyme in the biosynthesis of cholesterol and other isoprenoid compounds.

Another disorder, mevalonic aciduria (MA, MIM# 251170), has been described in which mutations in the MVK gene virtually abolish all enzyme activity of mevalonate kinase. This disease is characterised by failure to thrive, developmental delay, hypotonia, seizures, cerebellar ataxia, hepatosplenomegaly, anaemia, and a dysmorphic facies. Patients with MA suffer from recurrent attacks of generalised inflammation, similar to those observed in HIDS, but often more severe.

The cysteinyl leukotrienes (LTC₄, LTD₄, and LTE₄) are endogenous lipid molecules derived from arachidonic acid through the 5-lipoxygenase pathway. These compounds are very potent proinflammatory mediators, acting at subnanomolar concentrations. Several cell types are capable of producing cysteinyl leukotrienes, including macrophages, eosinophils, and mast cells. Endogenous urinary LTE₄ excretion is a reliable index of the systemic production of cysteinyl leukotrienes in vivo.

The pathogenesis of inflammation in both MA and HIDS remains unknown. However, in patients with mevalonic aciduria urinary excretion of LTE₄ was found to be highly increased, suggesting a pathogenic role for cysteinyl leukotrienes in MA. In the present study, we tested the hypothesis that cysteinyl leukotrienes are similarly involved in HIDS.

Patients and methods

After obtaining informed consent, urine samples were collected from seven children (aged 7–13 years), whose diagnosis of HIDS had been confirmed by demonstration of mutations in both copies of the MVK gene. From each case samples were obtained twice, once during a fever episode and once between attacks. Clinically, the fever could be attributed to an attack of HIDS (and not to an intercurrent infectious disease). Samples were collected in polypropylene containers and either immediately frozen and stored at −80°C (cases 1–3) or frozen at 20°C, thawed, transferred to smaller containers, and then stored at −80°C (cases 4–7) until analysis. The presence of pathological constituents was excluded. Mevalonate concentrations were determined with a stable isotope dilution assay and gas chromatography–mass spectrometry. Urinary LTE₄ was measured as described previously.

Briefly, H-LTE₄ (Du Pont–New England Nuclear, Boston, Massachusetts) was added as an internal standard. All urine samples were then acidified to pH 4.5 by addition of 0.1 mol/l HCl. Extraction of LTE₄ was performed on Sep-Pak C₁₈ cartridges (Waters Associates,
Leukotriene E4 in hyperimmunoglobulinaemia D and periodic fever syndrome

Milford, Massachusetts); separation of LTE4 from other leukotrienes was carried out by reverse phase high pressure liquid chromatography. Quantification of LTE4 was performed by enzyme immunoassays with specific antibodies (Cayman, Ann Arbor, Michigan). The corresponding specificity for the LTE4 antibody was 100% for LTE4, 10% for LTC4, 9% for LTD4, and <0.01% for LTE2.

Results

Between fever episodes the mean urinary LTE4 excretion in HIDS patients was 36 (range 30–40) nmol/mol creatinine, well within the normal limit (<40 nmol/mol creatinine). During fever episodes, urinary excretion of LTE4 increased in all patients (mean 92, range 46–199 nmol/mol creatinine; fig 1). This was significantly higher than the values recorded when patients were afebrile (p = 0.036). As expected in HIDS, the concentrations of mevalonic acid in urine were increased during fever periods. However, there was no correlation between urinary concentration of mevalonic acid (4.2–41.5 mmol/mol creatinine; normal <0.1 mmol/mol creatinine) and that of LTE4 (data not shown).

In addition, urinary LTE4 was found to be within normal limits (30.8 (6.5) nmol/mol creatinine) in 20 infants and children with fever caused by viral or bacterial infections as well as fever of unknown origin, recruited from outpatients and inpatients at the University Children’s Hospital, Heidelberg, Germany. Urinary LTE4 remained unchanged in the same group of otherwise normal children when afebrile (31.4 (6.3) nmol/mol creatinine).

Discussion

Cysteinyl leukotrienes have a pathophysiological role as mediators of inflammation in disease states like bronchial asthma, juvenile rheumatoid arthritis, or inflammatory bowel disease.11 In addition, LTE4, excretion was found to be enhanced in the most severe form of mevalonate kinase deficiency, MA. However, independently from the storage procedure, all urine samples from the patients with HIDS showed significantly raised LTE4 concentrations during fever episodes.

Although the number of patients is small, our data point to a role of cysteinyl leukotrienes in the pathogenesis of the episodic inflammation in HIDS. While increased LTE4 excretion is not specific for MA or HIDS, it is not merely a consequence of fever, as urinary LTE4 is not raised in children with fever caused by viral or bacterial infections. The introduction of cysteinyl leukotriene receptor antagonists should help to elucidate the role of these mediators in HIDS. It is speculative whether such agents could reduce the severity of fever attacks in HIDS. As these have thus far been resistant to all current anti-inflammatory treatment,2 a future new therapeutic approach would be most welcome.

Figure 1 LTE4 concentrations during and between fever episodes.

We are indebted to J de Jong, BT Poll-The, M Duran, and W Kuin for their expert help and advice. This study was supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn, Germany, to Dr Mayatepek (Ma1314/2–3).

Increased urinary leukotriene E4 during febrile attacks in the hyperimmunoglobulinaemia D and periodic fever syndrome

J Frenkel, M A A P Willemsen, C M R Weemaes, L Dorland and E Mayatepek

Arch Dis Child 2001 85: 158-159
doi: 10.1136/adc.85.2.158

Updated information and services can be found at: http://adc.bmj.com/content/85/2/158

These include:

References
This article cites 14 articles, 3 of which you can access for free at: http://adc.bmj.com/content/85/2/158#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Immunology (including allergy) (2018)
Drugs: endocrine system (120)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/