Coverage of neonatal screening: failure of coverage or failure of information system

A E Ades, J Walker, R Jones, I Smith

Abstract

Objectives—To evaluate neonatal screening coverage using data routinely collected on the laboratory computer.

Subjects—90 850 births in 14 North East Thames community provider districts over a 21 month period.

Methods—Births notified to local child health computers are electronically copied to the neonatal laboratory computer system, and incoming Guthrie cards are matched against these birth records before testing. The computer records for the study period were processed to estimate the coverage of the screening programme.

Results—Out of an estimated 90 850 births notified to child health computers, all but 746 (0.82%) appeared to have been screened or could be otherwise accounted for (0.14% in non-metropolitan districts, 0.39% in suburban districts, and 1.68% in inner city districts). A further 893 resident infants had been tested, but could not be matched to the list of notified resident births. The calculated programme coverage already exceeds the 99.5% National Audit Programme standard in 7/14 districts. Elsewhere it is not clear whether it is coverage or recording of coverage that is low.

Conclusion—Previous reports of low coverage may have been exaggerated. High coverage can be shown using routine information systems. Design of information systems that deliver accurate measures of coverage would be more useful than comparison of inadequately measured coverage with a national standard. The new NHS number project will create an opportunity to achieve this.

(Arch Dis Child 2001;84:476–479)

Keywords: screening; births; information systems; coverage

Attempts to measure local district coverage of neonatal screening have resulted in estimates ranging from 85.1% to 100%.1–6 Multidistrict studies have given average estimates of 95.8–99.93%.2,4,5,7,8 Concern about uptake was one of the factors that led to a national audit of neonatal screening,5 which produced standards for coverage and made a number of recommendations about the management and monitoring of neonatal screening. This has been echoed recently in a report from the UK National Screening Committee calling for “evidence-based standards”.5

However, previous studies have not always been able to distinguish between low coverage and low recording of coverage, and there has been insufficient focus on the methods used. Few laboratories have information systems from which coverage statistics can be routinely extracted, and in multidistrict audits in 1992 and 1998 some 30% of districts were unable to supply any estimate at all.1,6 We present here the largest evaluation of coverage to be published in the United Kingdom, based on the routine information system of a neonatal laboratory with two way electronic links with local child health computers (CHCs).

Methods

LABORATORY ADMINISTRATIVE PROCEDURES

The Great Ormond Street NHS Hospital Trust neonatal screening laboratory computer (NEON) has two way links with CHCs in 14 districts in North East Thames. Births to residents of these districts are recorded on CHCs usually within two days, and these records are routinely copied to NEON. Most Guthrie cards reach the laboratory 6–20 days later.9 A bar coded laboratory number is attached to each card on its arrival and a search is made for a corresponding record on NEON, using name, address, sex, birth date, and birth weight. If a match is found, the laboratory number is entered into the record and an acknowledgement is copied to the relevant CHC (“Matched records”). If a match cannot be found on the day of arrival (about 5% of cards), a new record is created on NEON (“unmatched cards”). Birth records that are not matched to Guthrie cards are referred to as “unmatched records”.

About 1% of neonatal Guthrie cards received at Great Ormond Street are repeat samples, requested if the first sample was inadequate or gave borderline results. Repeat sample records are usually linked to the record of the original sample, but a new record may be created on NEON if the card is not marked as a repeat.

Every few months laboratory staff produce and edit a list of unmatched CHC records, by district, for which the laboratory has not received a Guthrie card. This is sent to CHC managers, who check and annotate records of infants known to have died or moved away, whose Guthrie card was tested elsewhere, or whose parents refused testing. One copy of the amended list is sent back to the laboratory, where it is used to update the computer record. Other copies are sent to district midwifery offices and health visitors so that apparently untested infants can be identified and tested.

Department of Epidemiology and Public Health, Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK
A E Ades
J Walker

Department of Biochemistry, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London WC1N 3JH, UK
R Jones

Correspondence to: Dr Ades, MRC Health Services Research Collaboration, University of Bristol, Canynge Hall, Whiteladies Road, Bristol BS8 2PR, UK
rades@bristol.ac.uk

Accepted 9 January 2001
93 284 records of births from 1 April 1997 to 31 December 1998
- 1127 records marked as a duplicate record or repeat sample
- 414 duplicate records and repeats not marked as such
91 743
89 347 matched records
893 unmatched cards
1503 unmatched records
377 tested elsewhere
207 moved away
163 known to have died
10 testing refused
757
1503 – 757 = 746 apparently untested infants

Figure 1 Breakdown of records of births in 14 North East Thames districts.

DATA ANALYSIS
The analysis was restricted to infants born to residents of the 14 North East Thames districts with two way electronic links to NEON, born over a 21 month period between 1 April 1997 and 31 December 1998. Records identified as repeat samples or duplicate records were deleted. If an unmatched record could be linked to an unmatched CHC record, both were deleted and a new matched record was created. The main matching algorithm required a match on: date of birth, first five letters of the surname, and first six letters of the address; or date of birth and full postcode. Birth weight to within 10 g or birth rank were included so that records of twins were not counted as duplicates. We have calculated the programme coverage, defined here as the number of infants who have been screened or otherwise accounted for, and its complement, the number of apparently unscreened infants.

Results
There were 93 284 records on the laboratory computer belonging to resident infants born in the study period. Of these, 1106 records were marked as repeat samples, and a further 21 records were marked as duplicates. The main matching algorithm identified a further 336 duplicate or repeat records, and 78 more were identified using just two matching variables, leaving 91 743 records.

These records represent 89 347 matched records, 893 unmatched Guthrie cards, and 1503 unmatched CHC records (fig 1). Of the unmatched CHC records, 757 belonged to infants recorded as having been tested elsewhere, moved away, died, or whose parents refused testing. The remaining 746 unmatched records are therefore taken to represent infants who are apparently untested, which is 0.82% of the total 90 850 births notified to CHCs. The proportion apparently untested is highly dependent on district, and considerably lower in non-metropolitan districts (0.14%) than in suburban (0.39%) or inner city districts (1.68%) (table 1).

The number of apparently untested infants (746) was similar to the number of unmatched Guthrie cards that could not be attached to a birth record (893). This raised the possibility that some of the unmatched cards belonged in fact to the apparently untested children. The two lists were therefore compared by hand, in order to determine whether names, street addresses, or birth dates had been wrongly entered. It was concluded that only a small proportion, no more than 5% of the apparently untested infants, could be linked to the unmatched Guthrie cards.

Discussion
A 1984–1988 review of phenylketonuria screening showed that only one of 455 cases had been missed through a failure of coverage11 and none of the 728 cases between 1989 and 1998.12 As most untreated phenylketonuria results in profound handicap by 2 years of age,13 this would indicate an approximate 99.9% coverage (95% confidence interval 99.44% to 99.997%). This suggests that the low estimates derived from direct studies of coverage, 97.4%14 and 95.8%,15 which led to the National Audit project,1 along with the 95.8% figure from the national study itself, may have severely underascertained the true coverage. Further, the proposed national standard of 99.5% could be seen as insufficiently ambitious, as the data for phenylketonuria suggest that it has already been exceeded.

Detailed consideration of how coverage can be accurately measured has been lacking, and a number of methodological weaknesses can be detected in many of these earlier reports. Because CHC systems receive birth notifications and include fields for the phenylketonuria and congenital hypothyroidism tests, they provide a natural platform for routine coverage estimates. Unfortunately, test results may not always be entered on CHCs, leading to under-ascertainment of coverage.2 6 14 In other studies
the denominator list may have been over-
inflated by double counting, as records from
multiple sources, such as CHCs, obstetric
computers, and laboratory records, appear to
have been included.4

These difficulties have, in principle, been
avoided in this study, which uses CHC birth
notifications as a denominator and is based on
a system in which the arrival of each Guthrie
card is acknowledged and recorded on the
CHC of origin. However, lack of a unique
common identifier on CHC records and on
Guthrie cards makes the system described here
vulnerable to other risk factors for under-
ascertainment, many of which are more preva-
 lent in inner city areas. These include incom-
plete recording of perinatal death, movement
in and out of the region, failure to recognise
repeat samples as such, and difficulty in
matching incoming Guthrie cards to birth
records because of changes of name and/or
address.

Although there was no indication that the
unmatched Guthrie cards “belonged to” the
unmatched birth records, each must belong to
someone, possibly to a child who had been
resident in another region at birth but who had
moved in later. The existence of these cards in
large numbers, which has not been reported in
previous direct studies of coverage, illustrates
the weakness of the existing information
systems. This is reinforced by the disagreement
between the average numbers of births notified
to North East Thames CHCs and the numbers of
birth registrations recorded at the Office for
National Statistics: the annual average dif-
ference for the years 1992 through 1995 was
0.565%,15 comparable with the 0.82% un-
matched birth records.4

In spite of this, using the laboratory’s routine
information system with minimal further
processing, we were able to show programme
coverage of over 99.9% in three districts
outside London, coverage of over 99.5% in
seven districts, and an average 98.3% coverage
in inner London. The latter figure exceeds the
97.4% average for Merseyside in 1988/8923 and
the 95.8% reported in two inner London
districts in South Thames in 199324 and in the
National Audit programme,25 and suggests that
earlier reports of low coverage may have been
unduly pessimistic.

It is significant that previous studies report-
ing higher coverage locally or regionally have
relied on either careful case by case tracing of
those apparently untested or dedicated well
coordinated local staff.25 2358 A notable excep-
tion is the 99.93% coverage reported in
Birmingham as early as 1986, using a routine
laboratory information system linked to local
CHCs.26 This was the inspiration for the North
Thames system, but has the additional advan-
tage of having a unique identifier, the CHC
sequence number, printed on to the Guthrie
card. Using this system, the West Midlands
neonatal laboratory has been able to consist-
ently record coverage far in excess of the 99.5%
recommended coverage standard.

Screening coverage does need to be moni-
tored closely for both clinical and public health
reasons. Firstly, admission to special care units
is known to be associated with a higher risk of
failure to screen. Children with congenital
cyanotic hypothyroidism are at risk of perinatal
problems, and have been missed or screened late
for this reason.16 17 This could become a serious
issue if screening is extended to include a wider
range of metabolic disorders,13 some of which
can result in admittance to hospital in the first
week of life. Secondly, neonatal screening for
sickle cell disease throughout the United King-
dom has been recommended, but accurate
local data on coverage are required to deter-
mine whether a selective or universal screening
strategy would be the most cost effective for
each district.18

The new system for assigning NHS numbers,
to be implemented before the end of 2002, will
create an opportunity to develop a reliable neo-
natal screening information system on a na-
tional scale. The proposal is that maternity
computers issue NHS numbers at delivery, and
it is also intended that the NHS number will be
printed on to Guthrie cards. Accurate reliable
local routine monitoring of neonatal screening
coverage could then follow, but will require that
maternity computers and neonatal laboratory
computers are both linked into a national
network of CHCs or their future equivalents, to
ensure that results are recorded against the cor-
correct child’s record, wherever the child is resident
and wherever the tests are carried out. An
operational information system of this sort
could measure coverage accurately, could flag
up warnings on unscreened children, and could
allow assessment of efforts to improve perfor-
ance, lending itself to continual quality im-
provement.19 Development of such a system
would be more useful than attempts to compare
inadequately estimated coverage with arbitrary
national standards,20 or attempts to develop
“evidence-based” standards.21

Key messages
• Coverage of neonatal screening is higher
than recent reports suggest, but it is diffi-
cult to distinguish failure to screen from
failure to record screening
• Coverage of neonatal screening must be
monitored accurately both for clinical
and public health reasons
• The new system for issuing NHS num-
bers at birth will provide a basis for a reli-
able information system of neonatal
screening
• A national network encompassing neo-
natal laboratories and maternity and child
health computers is needed to
ensure that testing is carried out and the
results recorded, regardless of where the
parents are living, where the sample is
taken, and where the tests are carried out

The authors thank the staff of the Neonatal Screening Labo-
atory at Great Ormond Street NHS Trust, those at McKesson
HBOC who support the NEON system, and Shirley Thompson
who was instrumental in setting it up.
Contributors: This study was conceived by A E A. J W processed the NEON data and drafted the results. The NEON system was designed by the Signet (now McKesson HBOC) community systems team, who develop and support the Regional Interactive Child Health System (RICHS) in the former North East Thames Region, to a specification conceived by R J with input from A E A.

Funding: J W was supported by a Medical Research Council grant.

Conflicts of interest: none.

Coverage of neonatal screening: failure of coverage or failure of information system

A E Ades, J Walker, R Jones and I Smith

Arch Dis Child 2001 84: 476-479
doi: 10.1136/adc.84.6.476

Updated information and services can be found at:
http://adc.bmj.com/content/84/6/476

These include:

References
This article cites 11 articles, 5 of which you can access for free at:
http://adc.bmj.com/content/84/6/476#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Screening (epidemiology) (553)
- Screening (public health) (553)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/