LETTERS TO THE EDITOR

Fludarabine in the treatment of an active phase of a familial haemophagocytic lymphohistiocytosis

Editor,—Familial haemophagocytic lymphohistiocytosis (FHL) is a lethal disease with an uncontrolled activation of T lymphocytes and macrophages due to a perforin gene defect. If you have a burning desire to respond to a paper published in ADC or FE/N, why not make use of our “rapid response” option? Log on to our website (www.archdischild.com), find the paper that interests you, click on “full text” and send your response by email by clicking on “submit a response”. Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read rapid responses” on our homepage.

The editors will decide, as before, whether to also publish it in a future paper issue.

Rapid responses

If you have a burning desire to respond to a paper published in ADC or FE/N, why not make use of our “rapid response” option?

Log on to our website (www.archdischild.com), find the paper that interests you, click on “full text” and send your response by email by clicking on “submit a response”.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read rapid responses” on our homepage.

The editors will decide, as before, whether to also publish it in a future paper issue.

Fludarabine in the treatment of an active phase of a familial haemophagocytic lymphohistiocytosis

Visceral leishmaniasis: also beware of these deceptive microbes in non-endemic countries!

Editor,—We read with interest the report by Grech et al.1 From their population based study, it seems that the annual incidence of visceral leishmaniasis (VL) declined considerably in Malta as a result of the eradication of stray dogs. VL is still endemic around the Mediterranean Sea and sporadic cases are reported in children living in Northern Europe. It seems likely that with increasing tourism the incidence of VL will also increase in areas where until recently this condition would not even be thought of. During the last 18 months, we have diagnosed three children with VL. As the presentation features can be fairly dramatic and physicians in Northern Europe are not always alert to the possibility of this condition, we would like to call attention again to the possibility of VL in non-endemic countries.

The main clinical features of the patients are shown in table I. All three children presented with spiking high fevers, anorexia, hepatosplenomegaly, and pancytopenia. The onset of the symptoms was insidious and it took 3–12 weeks to establish the diagnosis. In all three patients this was achieved through bone marrow aspiration and the demonstration of the typical amastigotes in macrophages. The diagnosis was further confirmed through the demonstration of antibodies to the leishmania parasite. All three patients needed erythrocyte transfusions and patient three also needed platelet transfusions. A 5–10 day course of liposomal amphotericin-B was given to all three children. The treatment was well tolerated, and they all became afebrile within a week. Pancytopenia subsided over the ensuing 2–3 weeks and the children gradually returned to normal activity.

Naturally, we cannot draw epidemiological conclusions from such a small number of patients, but it is intriguing to find three unrelated cases within a relatively short time. While the eradication of stray dogs may go a long way to reduce the incidence of VL, vaccination would be more desirable. Although resistance and immunity against the leishmania parasite is not well understood, this seems intriguingly increases the VL in children travelling from Northern Europe might be because they have no transplacental immunity against the parasite and are therefore more prone to develop this condition than local children. There is much in common between the presentation features of the haemophagocytic syndromes and VL. It is noteworthy that all three of our patients showed signs of macrophage activation and haemophagocytosis was observed in their bone marrow smears. With increased awareness of this condition by physicians in non-endemic countries, the time required to reach the correct diagnosis and institute treatment should be reduced.

Table I Patient characteristics

<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis (years)</td>
<td>1</td>
<td>South of France</td>
</tr>
<tr>
<td>Interval from exposure to appearance of symptoms (months)</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Interval between appearance of symptoms and diagnosis (weeks)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Hepatomegaly (%)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Splenomegaly (%)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Hb (mmol/d)</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>WBC (×10⁹/l)</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Platelets (×10¹²/l)</td>
<td>47</td>
<td>107</td>
</tr>
<tr>
<td>Ferritin (µg/l)</td>
<td>10813</td>
<td>260</td>
</tr>
<tr>
<td>LDH (U/l)</td>
<td>4779</td>
<td>914</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>3.64</td>
<td>6.9</td>
</tr>
<tr>
<td>Serum IgG (g/l)</td>
<td>13.9</td>
<td>15.6</td>
</tr>
</tbody>
</table>

LDH = lactate dehydrogenase

I have explored the validity of this assay for use in supernatants of faecal homogenates in children with cystic fibrosis and found it wanting. Recovery of a 500 pg/ml spike of IL-8 progressively increased from 41% in samples which were a 12-fold dilution of faeces to 180% in samples which were a 120 000-fold dilution of faeces, when used according to manufacturer’s instructions. Prediluting the samples 50/50 in newborn calf serum, and using call of sera for further dilutions gave me this assay (R&D catalogue no DB800) mean (SD) spike recovery of 92.1 (12.5%) and coefficients of variation of 3.46% (intra-assay) and 6.85% (interassay). Without knowledge of the IL-8 ELISA validation data of Smyth et al, I assume that this assay returns similarly spuriously high IL-8 concentrations in polylethylene glycol based whole gut lavage fluid to my 120 000-fold dilution faecal supernatant. The absence of a significant difference between CF patients and controls in their α1 antitrypsin outputs suggests that intestinal inflammation was not present in the CF patients. Overestimation of the WGLF IL-8 concentration would explain the apparently implausibly large volumes of swallowed sputum that the authors estimate would be required to account for their results. In this study which could not turn off the mucociliary escalator, but did dramatically increase the rate of intestinal transit and exclude exogenous pan-creatic enzymes, swallowed sputum is the most likely explanation for the results.

GRAHAM BRIARS
Paediatric Gastroenterology, West Suffolk Hospital, Haverhill Lane, Bury St Edmunds IP3 2QG, UK
e-mail: g.briars@vgxn.net

Intestinal inflammation in cystic fibrosis

EDITOR,—Following their studies of whole gut lavage fluid, Smyth et al have suggested that a non-idiothetic intestinal inflammation occurs constitutively in patients with cystic fibrosis (CF), as a consequence of a proinflammatory effect of the patient’s CFTR mutations. They reported marginally elevated excretion of IgG, IgM, interleukin 1 (IL-1), neutrophil elastase, and eosinophil cationic protein, and much more significant increase in excretion of IL-8 and albumin, but no increase in excretion of α1 antitrypsin or α1 antitrypsin levels were not elevated when compared to controls, perhaps another hypothesis needs to be considered. Conceivably the inflammatory markers are not increased within the bowel, but rather, they are not degraded due to the lack of intestinal enzymes, α1 antitrypsin, which is resistant to proteolytic enzyme activity, would not be affected by such a phenomenon and, therefore, would be the same in patients with cystic fibrosis and controls. Perhaps the authors would need to resort to the somewhat dated technique of radio labelled albumin to definitively answer this question.

L EISENBERG
1837 2 Clark St, Suite 216, Tewsona CA 91356, USA
email: lyeisen@aol.com

We do not agree that our data is dependant upon IL-8 alone. We have shown statistically significant differences for a whole range of proteins and types of assays that we have performed, we have not carried out the extensive experiments for IL-8, as reported by Dr Briars. We do know that the polylethylene glycol, a key constituent of the lavage fluid, does not affect the IL-8 assay. There are two reasons why variable recovery is unlikely to be a major factor in our results. Firstly, by collecting whole gut lavage, any intestinal secretions present, including bile, or mucosal abnormalities found. Our observations concerning the increase in intestinal inflammatory markers in the whole gut lavage of cystic fibrosis patients have now been supported by a study which investigates intestinal inflammation within mucosal biopsy samples. This provides additional support to the hypothesis that the basic defect of cystic fibrosis transmembrane regulator can be proinflammatory.

Dr Eisenberg correctly points out the potential influence of pancreatic enzymes and degradation. The results we found for α1 antitrypsin were unexpected, given differences for albumin and IgG. Some discordance in data has been found previously in whole gut lavage from subjects with active inflammatory bowel disease who are pancreatic sufficient and who also can have raised intestinal permeability.

However, our data that showed raised albumin and IgG are consistent with well established data showing raised intestinal permeability in children with cystic fibrosis. As discussed, it has been found that protein outputs from balloon perfusion experiments (which exclude upper intestinal secretions) are similar to those found in whole gut lavage, which suggests that any potential effect of degradation from pancreatic enzymes is minimal. We also showed eosinophilic cationic protein to be raised in children with cystic fibrosis. As with α1 antitrypsin, this is relatively stable in faeces at room temperature (approx 21 % loss over 24 hours). This loss would be considerably lower during whole gut lavage. Thus, degradation would be unlikely to explain this difference.

N M CROFT
Department of Paediatric Gastroenterology, St Bartholomew’s and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, London, UK

Intestinal inflammation in cystic fibrosis

EDITOR,—I was interested by the report of Smyth and colleagues on the finding of markers of inflammation in whole gut lavage in patients with cystic fibrosis. As the α1 antitrypsin levels were not elevated when compared to controls, perhaps another hypothesis needs to be considered. Conceivably the inflammatory markers are not increased within the bowel, but rather, they are not degraded due to the lack of intestinal enzymes, α1 antitrypsin, which is resistant to proteolytic enzyme activity, would not be affected by such a phenomenon and, therefore, would be the same in patients with cystic fibrosis and controls. Perhaps the authors would need to resort to the somewhat dated technique of radio labelled albumin to definitively answer this question.

2 Briars GL, Shepherd RW. Faecal interleukin-8: the first validated assay provides equivalent and who also can have raised intestinal permeability.

However, our data that showed raised albumin and IgG are consistent with well established data showing raised intestinal permeability in children with cystic fibrosis. As discussed, it has been found that protein outputs from balloon perfusion experiments (which exclude upper intestinal secretions) are similar to those found in whole gut lavage, which suggests that any potential effect of degradation from pancreatic enzymes is minimal. We also showed eosinophilic cationic protein to be raised in children with cystic fibrosis. As with α1 antitrypsin, this is relatively stable in faeces at room temperature (approx 21 % loss over 24 hours). This loss would be considerably lower during whole gut lavage. Thus, degradation would be unlikely to explain this difference.

N M CROFT
Department of Paediatric Gastroenterology, St Bartholomew’s and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, London, UK

letters to the editor
Lumbar puncture should not be performed in meningococcal disease

Editor,—I was dismayed to see your publication of the letter by Dr Sam regarding the role of lumbar puncture in meningococcal disease. While fully understanding the need to get as much information as possible, the benefits of isolating the causative organism need to be weighed against the risk of causing clinical deterioration in a patient who may have a life-threatening condition and may require increased intracranial pressure, both of which are recognised contraindications to lumbar puncture. There are clear and recognised risks of performing such a procedure in such patients. The potential benefits of lumbar puncture include making a diagnosis of meningitis and isolation of the organism for epidemiological and sensitivity testing. In the UK the typical haemorrhagic rash of meningococcal infection is pathognomonic of the disease and should be treated as such prospectively, until further confirmatory evidence is available.

During the winters of 1998–99 and 1999–2000, we recorded our admissions who were RSV positive and had a Cambridge “CB” post code. “At risk” infants—that is, ex-preterm infants under 6 months of age, or those with bronchodysplasia (BDP) under two years, were identified from the records of the maternity and neonatal units serving our postal region. The total cost for admission was calculated using length of stay records of the maternity and neonatal units within our area, the potential cost of prophylaxis would more than double health authority costs for RSV, with little impact on our so-called “low risk” more major caseload.

JACKIE J BUCK
PHILIP DEBENHAM
ROBERT DASSICK
Department of Paediatrics, University of Cambridge Clinical School, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QG, UK

Hajj and risk of blood borne infections

Editor.—Annually, some two and a half million pilgrims congregate in the city of Mecca in Saudi Arabia to perform the Hajj (pilgrimage), a religious duty for all adult Muslims who are physically and financially able. Because of the very large numbers of peoples from disparate regions, and the hostile climate of the Arabian Desert, the chances of disease are high. Heat exhaustion, sunstroke, and infectious diseases such as pneumonia and meningitis have traditionally caused the greatest disease burden.1

One of the rites of the Hajj is for males to shave their heads, although trimming the hair is also acceptable. Most will choose the former, often in makeshift centres run by opportunistic barbers. A razor blade is commonly used, and may be used on several scalps before ultimately being discarded. The risks of blood borne infections such as HIV and hepatitis B and C are obvious, especially considering that many pilgrims come from regions of the world where such infections are endemic.2 Pilgrims should be aware of the potential dangers and be educated to insist on the use of a new blade. We would also strongly recommend that they be vaccinated against hepatitis B.

A R GATRAD
A SHEIKH
Manor Hospital, Mian Road, Walsall WS2 9PS, UK

References

Table 1 Potential cost of prophylaxis in the community

| Year | Total RSV related admissions | Prophylaxis prophylaxis in high risk infants | Prophylaxis cost | Savings in high risk infants
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1998–99</td>
<td>72</td>
<td>93940</td>
<td>97692</td>
<td>£1 equals approximately $1.5 (November 2000)</td>
</tr>
<tr>
<td>1999–2000</td>
<td>60</td>
<td>9428</td>
<td>97692</td>
<td>£1 equals approximately $1.5 (November 2000)</td>
</tr>
</tbody>
</table>

1 14.8% and 4/62 (6.5%, 1.8 to 15.7%) respectively. Supposedly “low risk” infants accounted for 92% (66/72) and 90% (54/60) of our RSV related admissions for each winter. There were no deaths in any of the admissions including the two with BPD.

In the first winter, 10 intensive care bed days were needed, none in the “high risk” population. In the second winter, such infants used 12 out of 54 intensive care bed days. Finally, inpatient costs for RSV in “high risk” infants was about 10% and 15% of total RSV related hospital costs for the two winters respectively (see table).

Taken together, even if there were potential savings following the introduction of prophylaxis to specific subgroups, a target population—arguably equally in need of protection—is being overlooked. In fact, in our area, the potential effect of introducing prophylaxis would more than double health authority costs for RSV, with little impact on our so-called “low risk” more major caseload.

Savings in “high risk” infants £1 equals approximately $1.5 (November 2000)
Intestinal inflammation in cystic fibrosis

GRAHAM BRIARS

Arch Dis Child 2001 84: 373
doi: 10.1136/adc.84.4.373c

Updated information and services can be found at:
http://adc.bmj.com/content/84/4/373.4

These include:

References
This article cites 2 articles, 1 of which you can access for free at:
http://adc.bmj.com/content/84/4/373.4#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/