Indirect measurements of sweat electrolyte concentration in the laboratory diagnosis of cystic fibrosis

Mary E Heeley, David A Woolf, Anthony F Heeley

Abstract

Aim—To investigate whether analytical methods based on the colligative physical chemical properties of ions or solutes in sweat are less effective than the specific measurement of electrolytes in the diagnosis of cystic fibrosis (CF).

Methods—A single sweat sample was collected (Macroduct) from each of 211 infants and children, of whom 57 had CF, for the measurement of sodium, chloride, osmolality, and conductivity.

Results—The ranges within which CF and non-CF individual values overlapped (equivocal ranges), were wider for sodium and osmolality measurement than for chloride or conductivity. Neither of the latter two measurements provided a discriminatory advantage over the other. The utilisation of broadly based age related ranges for non-CF control subjects served to improve the discriminatory power of all four measurements to an extent that, in this cohort, both chloride and conductivity provided complete discrimination.

Conclusion—Sweat conductivity is as effective as chloride measurement in the laboratory diagnosis of CF.

(Keywords: cystic fibrosis; sweat test; sodium; chloride; conductivity; osmolality)

The laboratory diagnosis of cystic fibrosis (CF) remains largely dependent on the measurement of electrolytes in sweat, despite the clear benefits that CFTR mutation analysis has brought to the diagnostic process. In the USA the sweat test is one of those clinical laboratory procedures for which National Consensus Guidelines have been issued as an aid to good practice. The latter include advice that indirect physical chemical measurements, osmolality, and conductivity, provide only approximate estimates of sweat electrolyte concentration, to a degree that renders them unreliable for the purpose of diagnostic testing. This view has been endorsed by the American CF Foundation with the recommendation that the “indirect” methods should be confined to use as screening tests. In the absence of supporting laboratory data it is necessary to question the validity of such advice and recommendations.

In this study we have sought to obtain comparable data from these different methods of measurement. We consider that the issue is one of importance for clinical, and in particular, paediatric practice, not only because these recommendations are becoming more widely publicised, but also because in the UK, to our knowledge, a considerable number of hospital laboratories are using indirect methods to provide sweat test results for diagnostic purposes.

Subjects and methods

Sweat tests were carried out on 57 infants and children with CF (mean age 3 years 10 months, range 0.5 months to 15 years), and on 154 who did not have this disease and who served as controls (mean age 2 years 10 months, range 0.5 months to 14 years 8 months). The latter were mostly infants and children, under the clinical care of one of us (DAW), who had presented with one or more of the signs and symptoms commonly associated with CF. In view of the fact that virtually all (98%) CF cases born in East Anglia are detected by neonatal screening, and that most control subjects had been screened with negative results, a diagnosis of CF was considered unlikely in the vast majority of these cases. However, in a nonscreening setting, it was considered that sweat testing would have been justified. A small minority of control subjects were well infants who underwent sweat testing either on the grounds of an existing family history of the disease or because of a positive neonatal screening test result (prolonged neonatal hypertrypsinaemia), but who on clinical examination were found to have no discernible signs or symptoms; the sweat test results obtained were not considered diagnostic for CF by the generally accepted criteria, as defined below in Results. Table 1 shows the proportion of control subjects in these various clinical categories.

Table 1 Number (%) of control subjects according to clinical category

<table>
<thead>
<tr>
<th>Signs and symptoms</th>
<th>Control subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to thrive + GI obstruction, diarrhoea, rectal prolapse</td>
<td>70 45%</td>
</tr>
<tr>
<td>Respiratory</td>
<td>46 30%</td>
</tr>
<tr>
<td>Failure to thrive + respiratory</td>
<td>20 13%</td>
</tr>
<tr>
<td>Family history of CF (well)</td>
<td>9 6%</td>
</tr>
<tr>
<td>Positive screening test (well)</td>
<td>5 3%</td>
</tr>
<tr>
<td>Prolonged jaundice</td>
<td>2 1.5%</td>
</tr>
<tr>
<td>Failure to thrive + family history</td>
<td>2 1.5%</td>
</tr>
</tbody>
</table>

The CF patients included those, who during the period of this study, had positive screening test results; diagnostic sweat tests were therefore performed. In most of these cases diagnosis was confirmed by mutation detection and, in the course of time, most infants developed some of the clinical signs and symptoms of the
Table 2 Results of direct and indirect electrolyte measurement in sweat, including equivocal ranges and number of subjects contributing to them

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (mth)</th>
<th>Genotype</th>
<th>Conductivity (mmol (NaCl eq)/l)</th>
<th>Osmolality (mmol/kg)</th>
<th>Sodium (mmol/l)</th>
<th>Chloride (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>CF</td>
<td>Control</td>
<td>CF</td>
</tr>
<tr>
<td>A</td>
<td>29</td>
<td>ΔF508/R117H</td>
<td>72</td>
<td>116</td>
<td>56</td>
<td>54</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>ΔF508/R117H</td>
<td>67</td>
<td>157</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>C</td>
<td>92</td>
<td>ΔF508/R117H</td>
<td>88</td>
<td>188</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>ΔF508/R117H</td>
<td>84</td>
<td>193</td>
<td>51</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 3 “Equivocal” results obtained in sweat of four CF patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (mth)</th>
<th>Genotype</th>
<th>Conductivity (mmol (NaCl eq)/l)</th>
<th>Osmolality (mmol/kg)</th>
<th>Sodium (mmol/l)</th>
<th>Chloride (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29</td>
<td>ΔF508/R117H</td>
<td>72</td>
<td>116</td>
<td>56</td>
<td>54</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>ΔF508/R117H</td>
<td>67</td>
<td>157</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>C</td>
<td>92</td>
<td>ΔF508/R117H</td>
<td>88</td>
<td>188</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>ΔF508/R117H</td>
<td>84</td>
<td>193</td>
<td>51</td>
<td>64</td>
</tr>
</tbody>
</table>

Results

Table 2 presents the results obtained from the four measurements on sweat specimens of both CF and control subjects. The data show that there are ranges of overlapping values observed for some CF and control subjects and that this occurs for both direct and indirect measurements (albeit with varying degrees of magnitude). In the diagnostic setting, these limits of overlap would constitute the observed equivocal ranges, and included in table 2 are the numbers of subjects of both categories, with individual patients designated A to N, whose values for each of the four measurements encompass the overlapping (equivocal) ranges.

From the data it appears that sweat conductivity and chloride measurements provide better discrimination between patient and controls than sodium and osmolality, with fewer data points overlapping within ranges of narrower limits. Only one of the CF patients (patient B) contributed “equivocal” values for all four measurements, the remaining three patients (A, C, and D) contributing to only those of sodium. The results obtained for the control subjects were similar, with only two (E and G) providing “equivocal” values from each of three measurements, the remaining subjects contributing only to those of sodium and osmolality. Table 3 presents the individual results obtained for the four CF patients (A–D).

All four patients possessed one copy of the CFTR mutation ΔF508, and in one patient (A) R117H was identified as the mutation on the other chromosome. In spite of extensive testing the second mutation could not be identified in the three other CF patients. At the time these sweat tests were performed all four patients had developed clear signs and symptoms of the disease; all had increased blood immunoreactive trypsin (IRT) concentrations at birth.

It was observed that among the control subjects, whose sweat test results overlapped those of CF patients, there was an apparent over representation of the relatively few older children (age 9–15 years), 30% versus 7% in the entire control population. Although there were too few subjects to establish reference values within narrowly defined age ranges, the increase in sweat electrolyte which occurs with age whether measured by direct or indirect methods is clearly discernible (see table 4). No such age related effect could be shown in the CF patients (data not shown). When taking age into account, in respect of non-CF control reference values, the number of subjects exhibiting...
sweat conductivity measurement. In accordance with both sweat chloride and conductivity, the status of both these patients would be considered equivocal if only one of our "equivocal" CF cases was confirmed by chloride and conductivity measurements. A recent survey has shown that the CF case yield, from sweat testing undertaken in laboratories serving major paediatric centres, is approximately one in 30 tests performed, from an annual (median) workload of 150 tests. On the basis of our findings, therefore, where sweat test results overlap, obtained either by direct or indirect sweat electrolyte measurement, is very similar to the results we report here. For example, in two comparative case studies, the range of values for sweat conductivity, chloride, sodium, and osmolality obtained from "equivocal" cases have been cited as 51–79 mmol (NaCl eq)/l, 50–70 mmol/l, 50–70 mmol/l, and 150–200 mmol/kg respectively. For the latter three measurements the results obtained from all four of our "equivocal" CF cases (table 3) fell within or marginally below these values; but for conductivity, two cases (C and D) had values greater than 80 mmol (NaCl eq)/l, which were predictive of CF. If, however, values for sweat chloride of greater than 60 mmol/l are considered predictive of CF then the status of both these patients would be concordantly judged by both sweat chloride and conductivity measurement.

A recent survey has shown that the CF case yield, from sweat testing undertaken in laboratories serving major paediatric centres, is approximately one in 30 tests performed, from an annual (median) workload of 150 tests. On the basis of our findings, therefore, where sweat test results overlap, obtained either by direct or indirect sweat electrolyte measurement, is very similar to the results we report here. For example, in two comparative case studies, the range of values for sweat conductivity, chloride, sodium, and osmolality obtained from "equivocal" cases have been cited as 51–79 mmol (NaCl eq)/l, 50–70 mmol/l, 50–70 mmol/l, and 150–200 mmol/kg respectively. For the latter three measurements the results obtained from all four of our "equivocal" CF cases (table 3) fell within or marginally below these values; but for conductivity, two cases (C and D) had values greater than 80 mmol (NaCl eq)/l, which were predictive of CF. If, however, values for sweat chloride of greater than 60 mmol/l are considered predictive of CF then the status of both these patients would be concordantly judged by both sweat chloride and conductivity measurement.

A recent survey has shown that the CF case yield, from sweat testing undertaken in laboratories serving major paediatric centres, is approximately one in 30 tests performed, from an annual (median) workload of 150 tests. On the basis of our findings, therefore, where sweat test results overlap, obtained either by direct or indirect sweat electrolyte measurement, is very similar to the results we report here. For example, in two comparative case studies, the range of values for sweat conductivity, chloride, sodium, and osmolality obtained from "equivocal" cases have been cited as 51–79 mmol (NaCl eq)/l, 50–70 mmol/l, 50–70 mmol/l, and 150–200 mmol/kg respectively. For the latter three measurements the results obtained from all four of our "equivocal" CF cases (table 3) fell within or marginally below these values; but for conductivity, two cases (C and D) had values greater than 80 mmol (NaCl eq)/l, which were predictive of CF. If, however, values for sweat chloride of greater than 60 mmol/l are considered predictive of CF then the status of both these patients would be concordantly judged by both sweat chloride and conductivity measurement.
The results we have obtained in infants under 12 weeks of age (table 5), show that a precisely defined reference range enables osmolometry to be used with diagnostic sensitivity and specificity. Our data also suggest that for older children, refining the reference ranges with respect to age can considerably improve the diagnostic efficiency of sweat osmolality measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.

The only CF patient (case B) whose sweat test results, for osmolality and sodium, remained equivocal, when age was taken into account, is of particular interest. He presented at a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostically uncomfortable when performed in a specialist CF centre and the diagnosis was established by nasal epithelium chloride channel conductance measurement. Although born outside East Anglia where his neonatal biochemical screen test did not include IRT measurement, at the age of 8 months retrospective testing of his neonatal dried blood specimen showed increased IRT concentrations characteristic of an infant with CF. At the same time we carried out the four parameter sweat test; the results obtained were less equivocal for conductivity than they were for chloride (table 3). Another of the four CF patients detected by newborn screening (case A, table 3), repeatedly had unequivocally normal sweat chloride concentrations when tested elsewhere as an asymptomatic neonate.

There were no outstanding clinical features which served to distinguish control subjects (N, J, H; table 4) whose sweat test results, when age was taken into account, remained equivocal. However, one of the control subjects (subject G) included in the four parameter sweat test study deserves special note (table 2). He was 1 month old when reviewed clinically for a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostic and century of sweat osmolality and sodium measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.

The only CF patient (case B) whose sweat test results, for osmolality and sodium, remained equivocal, when age was taken into account, is of particular interest. He presented at a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostically uncomfortable when performed in a specialist CF centre and the diagnosis was established by nasal epithelium chloride channel conductance measurement. Although born outside East Anglia where his neonatal biochemical screen test did not include IRT measurement, at the age of 8 months retrospective testing of his neonatal dried blood specimen showed increased IRT concentrations characteristic of an infant with CF. At this time we carried out the four parameter sweat test; the results obtained were less equivocal for conductivity than they were for chloride (table 3). Another of the four CF patients detected by newborn screening (case A, table 3), repeatedly had unequivocally normal sweat chloride concentrations when tested elsewhere as an asymptomatic neonate.

There were no outstanding clinical features which served to distinguish control subjects (N, J, H; table 4) whose sweat test results, when age was taken into account, remained equivocal. However, one of the control subjects (subject G) included in the four parameter sweat test study deserves special note (table 2). He was 1 month old when reviewed clinically for a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostic and century of sweat osmolality and sodium measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.

The only CF patient (case B) whose sweat test results, for osmolality and sodium, remained equivocal, when age was taken into account, is of particular interest. He presented at a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostically uncomfortable when performed in a specialist CF centre and the diagnosis was established by nasal epithelium chloride channel conductance measurement. Although born outside East Anglia where his neonatal biochemical screen test did not include IRT measurement, at the age of 8 months retrospective testing of his neonatal dried blood specimen showed increased IRT concentrations characteristic of an infant with CF. At this time we carried out the four parameter sweat test; the results obtained were less equivocal for conductivity than they were for chloride (table 3). Another of the four CF patients detected by newborn screening (case A, table 3), repeatedly had unequivocally normal sweat chloride concentrations when tested elsewhere as an asymptomatic neonate.

There were no outstanding clinical features which served to distinguish control subjects (N, J, H; table 4) whose sweat test results, when age was taken into account, remained equivocal. However, one of the control subjects (subject G) included in the four parameter sweat test study deserves special note (table 2). He was 1 month old when reviewed clinically for a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostic and century of sweat osmolality and sodium measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.

The only CF patient (case B) whose sweat test results, for osmolality and sodium, remained equivocal, when age was taken into account, is of particular interest. He presented at a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostically uncomfortable when performed in a specialist CF centre and the diagnosis was established by nasal epithelium chloride channel conductance measurement. Although born outside East Anglia where his neonatal biochemical screen test did not include IRT measurement, at the age of 8 months retrospective testing of his neonatal dried blood specimen showed increased IRT concentrations characteristic of an infant with CF. At this time we carried out the four parameter sweat test; the results obtained were less equivocal for conductivity than they were for chloride (table 3). Another of the four CF patients detected by newborn screening (case A, table 3), repeatedly had unequivocally normal sweat chloride concentrations when tested elsewhere as an asymptomatic neonate.

There were no outstanding clinical features which served to distinguish control subjects (N, J, H; table 4) whose sweat test results, when age was taken into account, remained equivocal. However, one of the control subjects (subject G) included in the four parameter sweat test study deserves special note (table 2). He was 1 month old when reviewed clinically for a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostic and century of sweat osmolality and sodium measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.

The only CF patient (case B) whose sweat test results, for osmolality and sodium, remained equivocal, when age was taken into account, is of particular interest. He presented at a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostically uncomfortable when performed in a specialist CF centre and the diagnosis was established by nasal epithelium chloride channel conductance measurement. Although born outside East Anglia where his neonatal biochemical screen test did not include IRT measurement, at the age of 8 months retrospective testing of his neonatal dried blood specimen showed increased IRT concentrations characteristic of an infant with CF. At this time we carried out the four parameter sweat test; the results obtained were less equivocal for conductivity than they were for chloride (table 3). Another of the four CF patients detected by newborn screening (case A, table 3), repeatedly had unequivocally normal sweat chloride concentrations when tested elsewhere as an asymptomatic neonate.

There were no outstanding clinical features which served to distinguish control subjects (N, J, H; table 4) whose sweat test results, when age was taken into account, remained equivocal. However, one of the control subjects (subject G) included in the four parameter sweat test study deserves special note (table 2). He was 1 month old when reviewed clinically for a few weeks of age with respiratory symptoms that were immediately suggestive of CF. His sweat test, for chloride, was diagnostic and century of sweat osmolality and sodium measurement (table 4). Despite this improvement overall sweat osmolality and sodium measurements remain marginally inferior to conductivity and chloride.
and laboratory practice in the USA, that indirect methods for the measurement of electrolytes are not as reliable as the traditional chemical analysis of chloride and sodium in the diagnosis of cystic fibrosis. We hope that the data presented here, and particularly relating to sweat conductivity, will enable paediatricians and clinical biochemists to make an evidence based judgement about the scientific and clinical validity of the sweat test methods they choose to use in their practice. Clinical laboratories in the UK should welcome and benefit from current initiatives aimed at developing robust external quality assessment for all aspects of this important test.

We express our thanks to paediatrician and CF nurse specialist colleagues in East Anglia for their help in arranging the patient sweat tests, to Tony Mulville of CSP, Hornchurch, Essex for loan of a Wescor 5200 Osmometer and the supply of Macroducts for the study, and to Ms Dawn Anderson for the preparation of this manuscript.

2 LeGrys VA, Burritt MF, Gibson LE, Hammond KB, Kraft K, Rosenstein BJ. Sweat testing: sample collection and quantitative analysis; approved guideline. National Committee for Clinical Laboratory Standards Document C34-A 1994; 14(22) NCCLS, Villanova, Pennsylvania 19085, USA.
Indirect measurements of sweat electrolyte concentration in the laboratory diagnosis of cystic fibrosis
Mary E Heeley, David A Woolf and Anthony F Heeley

Arch Dis Child 2000 82: 420-424
doi: 10.1136/adc.82.5.420

Updated information and services can be found at:
http://adc.bmj.com/content/82/5/420

These include:

References
This article cites 8 articles, 4 of which you can access for free at:
http://adc.bmj.com/content/82/5/420#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Cystic fibrosis (182)
Pancreas and biliary tract (269)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/