Plastic migration from implanted central venous access devices

P A Dewan, S K Condron, P N Morreau, R W Byard, J Terlet

Abstract

Background—This is the first reported study of histologically confirmed migration from intravenous access devices in children.

Methods—The capsules from around intravenous access devices were examined by light microscopy to determine the extent of the foreign body response; energy dispersive x-ray analysis was performed to document the elemental content of the foreign material.

Results—A fibroconnective tissue capsule was found around all the samples. Elemental silicon was found in six of 13 tissue samples, and a foreign body giant cell reaction was seen in three of these.

Conclusions—The pseudocapsule that surrounds an implanted vascular access device often has residual foreign material, including silicon.

(Keywords: silicon; intravenous access device; plastic; migration)

Silicone is used as an injectable particulate form for tissue augmentation, as a solid implant (breast implants, artificial joints, urinary prostheses), and as part of intravenous and haemodialysis lines. However, the migration of plastic particles, which was first described in 1967, has now been reported from a wide range of medical devices including plastic particle injections, solid orthopaedic and urological implants, and intravenous fluid lines; both vascular and lymphatic spread of silicone have been documented.1

Migration of silicone has been reported to many organs, including the lungs, brain, liver, spleen, and kidneys, and the clinical picture varies accordingly.4 The usual histological response to silicone is a foreign body giant cell reaction, with variable degrees of fibroconnective tissue and sometimes an acute inflammatory infiltrate. Both the migration risk and histological responses were explored in this study of 11 children who had had an indwelling intravenous access device in place.

Materials and methods

Eleven patients (three boys and eight girls) who had a vascular access device removed were studied. The devices had been in situ for between 27 and 997 days (median, 346 days). Foreign body inclusions positive for silicone have been documented.3

The venous access device and the surrounding soft tissue capsule were removed during surgery. The capsule surrounding the device was submitted for histological examination. Samples of the capsule were also examined by a scanning electron microscope for elemental identification of any particulate matter. Sections of the wax mounted tissues were taken from the samples and repeatedly washed in xylene, rinsed in alcohol and then in acetone, before being dried in a critical point drying apparatus. The samples were then mounted on aluminium stubs and coated with a thin (20 nm) carbon layer in a vacuum evaporator before being dried in a critical point drying apparatus. The samples were then mounted on a Philips XL20 scanning electron microscope for elemental identification of any particulate matter. Sections of five catheter samples and one of the devices were also mounted in a similar way to the tissue and coated with a carbon layer as above. They were then analysed in a Philips XL20 scanning electron microscope with an integrated EDXA (DX4i energy dispersive x-ray analyser). The detector collects x rays over the elemental range boron (Z = 5) to uranium (Z = 92) and was of the ultrathin window type. A 20 kV accelerating potential was used.

Results

Foreign body inclusions were found in the excised capsule of six of the 11 patients (table 1). The six capsules containing elemental silicon (Si) surrounded devices that had been implanted for 202 to 1854 days (median, 346 days). The samples that did not yield a positive result on the EDXA were from capsules surrounding devices that had been implanted for between 27 and 997 days (median, 346 days). The samples that did not yield a positive result on the EDXA were from capsules surrounding devices that had been implanted for between 27 and 997 days (median, 346 days).

Table 1 Sex and diagnosis of patients, duration of intravenous access implantation, and capsule tissue sample number

<table>
<thead>
<tr>
<th>Sex</th>
<th>Diagnosis</th>
<th>Duration (days)</th>
<th>Tissue sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Short gut</td>
<td>1854</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>Gastrointestinal bleeding</td>
<td>997</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Hodgkin’s disease</td>
<td>202</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>Ewing’s sarcoma</td>
<td>334</td>
<td>4</td>
</tr>
<tr>
<td>M</td>
<td>Hepatoblastoma</td>
<td>346</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>Germinoma</td>
<td>310</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>Osteosarcoma</td>
<td>624</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>Sacrococcygeal teratoma</td>
<td>338</td>
<td>8</td>
</tr>
<tr>
<td>M</td>
<td>Short gut</td>
<td>27</td>
<td>9, 10</td>
</tr>
<tr>
<td>F</td>
<td>Rhabdomyosarcoma</td>
<td>613</td>
<td>11, 12</td>
</tr>
<tr>
<td>F</td>
<td>Wilms’s tumour</td>
<td>470</td>
<td>13</td>
</tr>
</tbody>
</table>

There was low profile port (n = 4), Portacath (n = 1), and Microport (n = 1).

Department of General Surgery, Royal Children’s Hospital, Melbourne, Australia
P A Dewan
S K Condron
P N Morreau
R W Byard
J Terlet

Correspondence to:
Dr P A Dewan, Department of General Surgery, Royal Children’s Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
email: dewan@cryptic.rch.unimelb.edu.au

Accepted 8 January 1999
Table 2 Capsule histology, energy dispersive x ray analysis findings, and device type

<table>
<thead>
<tr>
<th>Tissue sample</th>
<th>Si</th>
<th>Ca</th>
<th>Al</th>
<th>Foreign material</th>
<th>Focal chronic inflammation</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>Infusaport</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Portacath</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>Infusaport</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Therex low profile port</td>
<td>Infusaport</td>
</tr>
<tr>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Microport</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Microport</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
<td>Infusaport</td>
</tr>
</tbody>
</table>

Si, silicon; Ca, calcium; Al, aluminium.

Figure 1 A foreign body giant cell containing material that was shown to be silicone on energy dispersive x ray analysis.

Discussion

Silicone was originally chosen for medical use because of its chemical inertness and the assumption that it would also be biologically inert. However, reports on the histological response to silicone have been variable. Foreign body giant cell granulomas have been described, with silicone inclusions and a surrounding inflammatory infiltrate often seen as a fibrous tissue capsule around the device. There have been suggestions that the silicone may have a carcinogenic effect, after the discovery of malignancy in patients who had had intra-articular joint prostheses for rheumatoid arthritis. However, given the large number of joint prostheses that have been inserted since their development in the 1960s, the very low number of reported cases suggests that the risk is minimal.

In our study, intravenous access devices from a group of 11 children were removed complete with surrounding capsule. The devices had been implanted for between 27 and 1854 days. On removal, the capsule was examined by EDX-A and Si was identified in five of the capsules. In five capsules, were made of fibroconnective tissue; two of these showed a focal chronic inflammatory reaction. Two of the other capsules showed a focal chronic inflammatory reaction. All the capsules with silicone had been implanted for longer than 202 days, with a median of 470 days.

In a similar study, elemental silicon was found in six of 15 capsules surrounding Port-a-Catheter devices. However, Evans and Baldwin did not report the association, although concentrations of Si were greater than measured previously in cadaver tissue from patients with no medically induced Si contact. 7

Our results show that silicone does migrate from long term indwelling devices, and does cause a local inflammatory response. To determine the importance of our findings, longitudinal studies are necessary, both to substantiate our findings and to monitor carcinogenicity. The use of these devices in children for the past several years without any reports of long term adverse effects suggests that complications are rare. However, more research is needed to enhance our understanding of the long term sequelae of these devices in children.

Plastic migration from implanted central venous access devices

P A Dewan, S K Condron, P N Morreau, R W Byard and J Terlet

Arch Dis Child 1999 81: 71-72
doi: 10.1136/adc.81.1.71

Updated information and services can be found at:
http://adc.bmj.com/content/81/1/71

These include:

References
This article cites 7 articles, 0 of which you can access for free at:
http://adc.bmj.com/content/81/1/71#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (1133)
- Injury (437)
- Trauma (434)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/