Randomised double blind trial of hypotonic oral rehydration solutions with and without citrate

T Rautanen, E Salo, M Verkasalo, T Vesikari

Abstract
Hypotonic oral rehydration salts solutions (ORS) have been proved to be better than isotonic solutions with respect to water absorption. To establish whether a base precursor is essential in the composition of a hypotonic ORS with improved absorption properties, a randomised double blind clinical trial was conducted comparing two formulas of hypotonic ORS, each with an osmolality of 224 mmol/l, with or without citrate, in a group of 107 children admitted to hospital with acute diarrhoea. The two solutions were effective in the correction of dehydration and there was no difference between the treatments in the duration of diarrhoea. The patients receiving the hypotonic ORS with citrate consumed less of the solution, however, and their metabolic acidosis was corrected earlier. It is concluded that citrate is clinically advantageous in a hypotonic ORS, but a hypotonic formula without a base precursor is also effective.

Arch Dis Child 1994; 70: 44–46

Oral rehydration therapy has been a significant advance in the treatment of diarrhoeal dehydration in developing countries. Although it has also gradually been accepted in developed countries, the optimum composition for an oral rehydration salts solution (ORS) in Europe and the USA is still controversial.1-5 Findings from perfusion studies in infected rats and in human volunteers have indicated that hypotonic rather than isotonic solutions are optimal for the absorption of water and sodium and are therefore recommended for clinical use.6-9 A hypotonic oral rehydration solution with a sodium concentration of 60 mmol/l and an osmolality of 224 mmol/l has been compared with a commercially available oral rehydration solution with an osmolality of 304 mmol/l and it was found that the hypotonic solution was better than the isotonic solution in the treatment of acute diarrhoeal dehydration in young children.10

The need for bicarbonate or a base precursor in the ORS has also been questioned.11 A simple salt-sugar solution would be easier and less expensive to prepare, but historically the inclusion of a base has been regarded as important or even critical for the enhanced absorption of sodium and water and for the correction of acidosis. Again, studies in rats indicate that the addition of bicarbonate or a base precursor does not have a significant effect on intestinal water and electrolyte absorption, and, at a high concentration, bicarbonate may even reduce absorption in the case of intestinal secretion.12 13 Although an ORS with bicarbonate or a base precursor appears to hasten recovery from acidosis, this may be of little clinical importance.14-16

Having established the excellent clinical performance of a hypotonic solution (osmolality 224 mmol/l), we wanted to evaluate the role of a base precursor using a solution of the same osmolality but without citrate for the treatment of diarrhoeal dehydration.

Patients and methods
The study protocol was approved by the ethical review committee of the health care centre of Helsinki. Informed parental consent was obtained for all patients enrolled in the study.

The study was carried out at the Aurora Hospital, Helsinki, between January 23 and July 20, 1992. Infants less than 36 months of age admitted to hospital for acute diarrhoea (duration five days or less before admission) were included in the study. Patients with serum sodium concentrations less than 130 mmol/l or greater than 155 mmol/l were to be excluded. One infant with an initial sodium concentration of 129 mmol/l on admission was enrolled, however, and was managed successfully with oral rehydration.

The eligible patients were randomised to receive either an oral hypotonic rehydration salts solution including citrate (citrate ORS) or a hypotonic ORS without a base precursor (non-citrate ORS). Table 1 gives the compositions of the two solutions. The solutions were prepared by the Helsinki city hospitals pharmacy and supplied as a dry powder, which was reconstituted in the ward with 500 ml water. The sachets containing the dry powder and the two solutions were identical in appearance, ensuring that the study was double blind.

An ORS was prescribed by the physician on duty after estimation of the degree of dehydration. The recommendation was to prescribe four thirds the estimated fluid deficit to be administered in the first six to eight hours. If
the child refused to drink, the solution was
given through a nasogastric drip. After the
initial rehydration the children were prescribed
a minimum of 30 ml/kg/day of additional ORS.
For continued vomiting and diarrhoea, the amount
of ORS was increased according to their
needs, as estimated by the physicians in
the ward. Normal feeding for age was resumed
after the initial six to eight hours of rehydra-
tion. Other fluids were given with food, includ-
ing plain water, milk, and light juice.

The exact amount of ORS administered was
recorded by the nurses in the ward. They also
recorded all stools passed by the children
(described as watery, loose, or solid), and all
vomiting episodes. The weight was recorded
on admission, after initial rehydration, and
daily thereafter during their stay in hospital.
Blood sodium, potassium, and the acid-base
balance were determined on admission and
daily thereafter during their stay in hospital.
The sodium concentration in urine was deter-
mined from male patients in the morning after
initial rehydration. A stool sample was taken
during the stay in hospital for the detection
of rotavirus using an enzyme immunoassay. A
systematic search for other enteropathogens
was not carried out.

All data were analysed using the Statistic 3·1
statistical analysis program for microcom-
puters. A two sample t test, rank sum two
sample test, and the χ² test were used.

Results

Fifty four children received the hypotonic
citrate ORS and 53 children received the
hypotonic solution without citrate. Table 2
gives the characteristics of the two groups. The
two groups were comparable for duration of
diarrhoea before admission to hospital, degree
of dehydration, electrolyte balance, and
acidosis. For no obvious reason, the patients
who were randomised to the citrate ORS group
were younger.

Sixty six (62%) of the 107 patients were
positive for rotavirus and one patient was posi-
tive for adenovirus. Fourteen stool cultures
were taken from various patients because of
high fever, mucoid stools, or a history of travel;
all were negative.

As the groups were not different with respect
to weight loss on admission, the mean amounts
of ORS given for initial rehydration therapy
were almost identical: 557 and 563 ml respect-
ively (table 3). There was no difference
between the two groups in the weight gain after
initial rehydration.

In contrast, the amount of ORS needed for
maintenance differed between the groups.
Therefore, the mean total consumption was
1335 ml in the citrate ORS group compared
with 1643 ml in the non-citrate ORS group
(p=0·020, rank sum two sample test, table 3).
Of the 107 patients, three received intravenous
fluids in addition to oral treatment; two were
in the citrate ORS group and one in the non-
citrate group.

There was no significant difference between
the two treatment groups in the number of
diarrhoeal stools (mean 9·7 and 7·7 in the
citrate ORS and non-citrate ORS groups
respectively), in the duration of the diarrhoea,
or in the length of hospital stay (table 3). There
was a small but non-significant difference in
favour of citrate ORS in the duration of vomit-
ing (table 3). The mean number of vomiting
episodes was similar in the two groups (1·4 and
1·5 in the citrate and non-citrate ORS groups
respectively, however.

The most significant difference between
the treatments was in the duration of recovery
from acidosis, which was significantly shorter
in the citrate ORS group: the mean base excess
in the morning after admission was −3·7 in the
patients receiving the citrate ORS compared
with −6·8 in those rehydrated with the
non-citrate ORS (p<0·001). On the second
morning after admission, however, the degree
of acidosis was the same in the two groups
(table 4).

The blood sodium and potassium concen-
trations were not different in the two treatment
groups on admission and or on subsequent
days of treatment (table 4). The urinary
sodium concentration after initial rehydration
was also similar in the two groups (38·0 and
37·2 mmol/l in the citrate and non-citrate ORS
groups respectively).

Discussion

In this clinical trial a hypotonic ORS with or
without citrate performed almost equally for
most measures of outcome. The two ORS
solutions were efficient for rehydration. The
hypotonic ORS with citrate corrected acidosis
earlier than an almost similar ORS without
citrate, however. Other than for the correction

| Table 2 Characteristics of the patients on admission (mean (SD) values) |
|------------------|------------------|------------------|
| | Citrate ORS (n=54) | Non-citrate ORS (n=53) |
| Age (months) | 13·5 (6·9) | 16·9 (8·0)* |
| Duration of diarrhoea before admission (hours) | 57·2 (30·4) | 63·3 (33·0) |
| Acute weight loss (g) | 311 (220) | 364 (232) |
| Blood sodium concentration (mmol/l) | 137 (3·7) | 137 (3·6) |
| Blood base excess (mmol/l) | −7·5 (3·6) | −6·9 (3·9) |

*p<0·020, two sample t test.

| Table 3 Outcome of the two treatment groups (mean (SD) values) |
|------------------|------------------|------------------|
| | Citrate ORS (n=54) | Non-citrate ORS (n=53) |
| Amount of ORS consumed in first 6-8 hours (ml) | 557 (207) | 563 (181) |
| Total amount of ORS consumed in the hospital | 1335 (635) | 1643 (740)* |
| Weight increase at time of discharge (g) | 211 (229) | 167 (212) |
| Duration of vomiting (hours) | 17·1 (2·1·5) | 25·4 (27·0) |
| Duration of diarrhoea in the hospital (hours) | 38·0 (33·5) | 41·8 (31·2) |
| Duration of stay in hospital (hours) | 61·0 (34·5) | 70·0 (34·9) |

*p=0·020, rank sum two sample t test.

| Table 4 Blood electrolyte and acid-base balance of the two treatment groups (mean values) |
|------------------|------------------|------------------|
| | Day 1 | Day 2 | Day 3 |
| (admission) | (citrate/non-citrate) | (citrate/non-citrate) | (citrate/non-citrate) |
| Base excess (mmol/l) | −7·7/−6·9 | −3·7/−6·8* | −4·4/−4·1 |
| Sodium concentration (mmol/l) | 137/0·136·7 | 135/0·136·3 | 157/0·137·1 |
|Potassium concentration (mmol/l) | 4·2/4·3 | 4·3/4·6 | 4·3/4·5 |

*p<0·001, two sample t test.
of acidosis, there was no obvious advantage of the citrate containing hypotonic ORS over the composition without citrate. The rehydration properties of the two solutions appeared to be equal.

Previous studies in the diseased rat model and in healthy human volunteers have indicated that a base or base precursor may have only a minor role in the absorption of an ORS. Lifshitz and Wapnir found that in the rat small intestine the addition of up to 30 mmol/l of bicarbonate in an ORS did not increase and 40 mmol/l of bicarbonate actually reduced the net absorption of water; similar results were found when bicarbonate was replaced by citrate. Rolston et al showed that bicarbonate and acetate can increase absorption in healthy rat small intestine, and acetate and citrate in healthy human jejunum. Elliot et al found similar results. Both study groups showed, however, that in a secretory rat intestine (induced by cholera toxin) the inclusion of bicarbonate significantly reduced the water absorption compared with bicarbonate free solution.

It is remarkable that although in our study the patients receiving ORS without citrate consumed significantly more ORS, the duration of diarrhoea was not longer than in those receiving the ORS with citrate. This suggests that the absorption properties of a hypotonic ORS without citrate were good, and the solution did not induce osmotic diarrhoea. This might be due to the low glucose concentration of 64 mmol/l, resulting in a sodium:glucose ratio of 1:1.

Our study has shown that a hypotonic ORS with osmolality of 224 mmol/l is effective for the correction of diarrhoeal dehydration even without a base precursor. A citrate-containing solution will correct metabolic acidosis earlier, however, and therefore citrate is recommended for the composition of a hypotonic ORS. If, for example, in developing countries, the manufacture, packaging or storage of an ORS with a base precursor is difficult, a hypotonic ORS without a base precursor might be considered as an option. For home made salt-sugar solutions in particular a hypotonic formula without citrate might be advantageous, and should, in the future, be directly compared with the isotonic sugar-salt solutions recommended at present.

The authors are grateful to the nursing staff of ward No 14 of the Aurora Hospital for their dedication to this trial.

Randomised double blind trial of hypotonic oral rehydration solutions with and without citrate.
T Rautanen, E Salo, M Verkasalo and T Vesikari

Arch Dis Child 1994 70: 44-46
doi: 10.1136/adc.70.1.44

Updated information and services can be found at:
http://adc.bmj.com/content/70/1/44

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/