Early immune responses to *Dermatophagoides pteronyssinus* and atopic predisposition

R G G Ruiz, D M Kemeny, F Mariani, J F Price

Abstract

Responses to the house dust mite during infancy may be important determinants of asthma in susceptible individuals. This study assessed early IgG subclass antibody responses to *Dermatophagoides pteronyssinus* in children of atopic parents. Sixteen atopic and 15 non-atopic children were selected from a birth cohort, and atopic status was established according to follow up over the first two years. IgG1 and IgG4 antibodies to *D pteronyssinus* were measured by enzyme linked immunosorbent assay at 7 days and 3, 6, 12, and 24 months. In all children *D pteronyssinus* IgG1 fell at 3 months (indicating maternal antibody loss), rose progressively to 12 months, and waned at 24 months. *D pteronyssinus* IgG4 was only detectable at 7 days. Children who were atopic by 2 years and therefore at greater risk of asthma, tended to have higher *D pteronyssinus* IgG1 at 6 and 12 months. These data suggest greater exposure or responsiveness to dust mite during infancy than in the second year.

House dust mite sensitivity has long been associated with asthma.1 A causal relationship has been inferred by the influence of the degree of mite exposure on the prevalence of asthma.2 Exposure during infancy may be particularly important in determining subsequent sensitisation to Aeroallergens.4 Children with mite sensitivity are more likely to have been born in a season when mite counts were high,5 6 and higher levels of mite exposure in infancy have recently been reported among children who have persistent wheezing at 11 years.7

While much research has concentrated on measuring mite exposure, it is the individual response to this ‘allergen load’ that determines whether sensitisation ultimately occurs. There may be threshold levels of exposure for sensitisation1 but individuals with a similar genetic predisposition to atopy need not produce analogous immune responses to the same allergen load.

During the first year of life children are capable of mounting IgE antibody responses but they are usually to ingested allergens.5 6 IgE and IgG responses to Aeroallergens are reported to be comparatively uncommon before the second year of life.6 It would be difficult to reconcile the importance of mite exposure during infancy with an apparent lack of immune responsiveness to the allergen at this time. We have recently demonstrated IgG1 subclass anti-bodies to the dust mite, *Dermatophagoides pteronyssinus*, during the first year in most members of a group of ‘unselected’ children.10

The discrepancy with previous findings may be explained by our use of an enzyme linked immunosorbent assay (ELISA) with whole *D pteronyssinus* extract instead of a radioimmuno-assay for antibody to *D pteronyssinus*.1 8 The latter assay was probably less sensitive as antibodies to *D pteronyssinus* I may not represent the majority of dust mite antibodies at this age; they apparently constitute less than half of newly generated IgE antibodies to *D pteronyssinus* in children.11

The present study aimed to measure IgG subclass antibody responses to whole *D pteronyssinus* by ELISA in the first two years in subjects selected from a large cohort of children with a predisposition to atopy. The responses were compared between children with the most obvious evidence of atopy during the first two years, who were at greater risk of subsequent asthma,12 and those who were most clearly non-atopic despite their predisposition.

Subjects and methods

COHORT DETAILS

All cohort members had been term neonates born between September 1987 and July 1989 in the Camberwell Health Authority. They had been identified by a history of atopic disease in both parents on antenatal questionnaires. If informed parental consent was obtained and atopy could be confirmed in at least one parent by a positive skin prick test, the infants were enrolled.13

They were assessed initially on day 7 when a blood sample was taken, and then at 3, 6, 12, and 24 months to document atopic disease, perform skin prick tests, and obtain further blood samples. Additional examinations were made when coughs or suspicious rashes were reported.

Eczema diagnosed according to the guidelines of Hanifin and Rajka14 but modified for infants,15 wheezing on at least two separate occasions, and a history of recurrent immediate food reactions were each regarded as evidence of atopic disease.

Skin prick tests to dust mite (*D pteronyssinus*), cows’ milk, hens’ eggs, mixed grass pollens, cat fur (Bencard), mixed moulds (Dome/Hollister-Stier), and histamine 1 mg/ml and diluent control solutions (Bencard) were performed on the back in children and the forearm in parents. A weal after 15 minutes at least 2 mm in children, or 3 mm in adults, greater than that
caused by the negative control was considered positive.

Sera were stored at -20°C and subsequently analysed for total serum IgE antibody by an ultrasensitive ELISA16 in 7 day sera and by conventional two site ELISA17 in all other samples. Undetectable concentrations were assigned a value of 0.01 IU/ml and the geometric mean and SD were calculated for each age group, although 7 day concentrations continued to have a very skewed distribution after log transformation.

The ethical committee of King's College Hospital had approved the method of follow up and all procedures.

SUBJECT DETAILS

Eighty of the original cohort completed the two year follow up. The first 16 (eight girls) classed as atopic and the first 15 (seven girls) considered non-atopic were selected for the study. The number of subjects was limited so that all samples from each age could be assayed together on a single microtitre plate thus eliminating interassay variability.

Children classed as atopic had: (i) positive skin tests to any allergen and (ii) evidence of atopic disease. Children were considered non-atopic if they met all of the following three criteria: (i) negative skin tests, (ii) a total IgE concentration less than 0.5 IU/ml at 7 days and below the geometric mean plus 1 SD at any other age, and (iii) no evidence of atopic disease.

Of the 16 atopic children 11 had suffered with eczema (fig 1) and five had given positive skin tests to *D. pteronyssinus*.

LABORATORY MATERIALS

Nunc Immuno (MaxiSorp F96) microtitre plates were purchased from Gibco Ltd, horse serum from Sera Lab Ltd, Tween 20, alkaline phosphatase labelled rabbit antimus IgG and p-nitrophenyl phosphate (PNP) from Sigma Ltd and IgG subclass-specific mouse monoclonal antibodies (clones NL16-IgG, RJ4-IgG4 and 8A4-IgG) from Oxoid Ltd. Freeze dried whole dust mite extract (*D. pteronyssinus*) was a kind gift from Dr R Whal (Allergopharma, Reinbeck, Germany).

IgG SUBCLASS ASSAYS

IgG\textsubscript{1} and IgG\textsubscript{4} antibodies to *D. pteronyssinus* were measured by a two site ELISA18 in sera from 7 days, and 3, 6, 12, and 24 months in all 31 children. Incubation volumes were 50 l and temperatures were 4°C unless stated otherwise. There were three washes with phosphate buffered saline (PBS) containing 0.05% Tween 20 between each incubation. The assay diluent was PBS containing 0.5% Tween 20 and 0.5% normal horse serum. Briefly, the microtitre plates were coated overnight with 10 μg/ml *D. pteronyssinus* extract in pH 9.6 carbonate/bicarbonate buffer. The test sera, diluted 1/50, were added in duplicate and incubated for two hours. There followed in sequence one hour incubations with monoclonal IgG\textsubscript{1} or IgG\textsubscript{4} (1/1000) and alkaline phosphatase-labelled antimus IgG (1/300). Finally, 100 μl of the substrate, PNP (1 mg/ml in pH 9.8 diethanolamine buffer) were added and after one hour at room temperature, the colour reaction was stopped with 50 μl 3M sodium hydroxide and the optical density read at 405 nm in a Titertek multiscan plate reader (Flow Labs). Antibody concentrations were derived from a standard curve obtained using an IgG panreactive monoclonal antibody (clone 84A4) with dilutions of a high positive reference serum which was assigned 10 000 arbitrary units/ml (AU/ml) when undiluted.18

STATISTICAL ANALYSIS

Even after log transformation *D. pteronyssinus* IgG\textsubscript{1} antibody concentrations were not normally distributed at every age. However the log ratios of the concentrations at successive ages in each child did have normal distributions. Changes in *D. pteronyssinus* IgG\textsubscript{1} concentrations between two ages were therefore given as the geometric mean ratio of the concentrations at the two ages with a 95% confidence interval. The corresponding one sample t tests gave the probability of the observed means if the true mean log ratio was zero (that is, if the ratio was 1); p<0.0125 was taken as the level of significance to allow for multiple comparisons (Bonferroni method). The Mann-Whitney test was used to analyse differences within age groups. The probability level for a significant difference was adjusted to p<0.01 to allow for five comparisons. Finally a sample size of 31 was theoretically able to have an 80% chance of detecting a significant difference at the 1% level of about 1:2 times the value of a SD. Bearing in mind that any SDs would be tentatively derived from actual study data with a less than perfect distribution, this meant that one might expect to detect differences down to 40–70 AU/ml, except at 7 days when variability was greatest.

Results

Every child had detectable concentrations of IgG\textsubscript{1} antibody to *D. pteronyssinus* at all ages (fig 2). Concentrations were highest at 7 days, reached a nadir at 3 months, rose progressively up to 12 months but declined at 24 months. The 95% confidence intervals for the geometric mean ratio of concentrations at consecutive ages was calculated. One could be 95% sure that on average 12 month concentrations were between 40-70 AU/ml, except at 7 days when variability was greatest.

Figure 1 Categorisation of the 16 atopic children by evidence of atopic disease.
Early immune responses to Dermatophagoides pteronyssinus and atopic predisposition

The validity of this study depends on the specificity of the assay for IgG subclass antibodies to D pteronyssinus. IgG1 antibody binding to D pteronyssinus could be substantially inhibited by preincubation of the children’s sera with the D pteronyssinus extract and cross reactivity with a different antigen (ovalbumin) was minimal. This implied the antibodies had reasonable affinity and specificity. The assay was therefore regarded to measure genuine D pteronyssinus IgG1 antibodies in the children’s sera.

The pattern of change in D pteronyssinus IgG1 concentrations parallels changes in total IgG up to one year. The fall in concentrations at 24 months, however, suggests a specific immune response. A possible explanation for the fall is a reduction in the time spent maximally exposed to the antigen, as actual mite counts are unlikely to have altered drastically in every child’s environment between the first and second years. Alternatively it could imply a switch in the subclass of IgG after prolonged exposure. IgG1 would be the obvious alternative subclass but no IgG4 antibodies to D pteronyssinus were detected in any child at 24 months.

Measurements made at 3 months and before reflect maternal rather than the infants’ own antibodies. Rises in specific IgG1 do occur between 7 days and 3 months, such as in IgG1 to casein, indicating an infant response at this time. A similar response to the dust mite may be obscured by relatively high concentrations of maternal mite specific antibody in these children. By 6 months, and certainly by 12 months, most maternal antibody will have cleared. Measurements at these times are therefore a better indicator of the infant response. It may be that responsiveness to the dust mite is greatest in infancy and begins to wane thereafter.

IgG4 antibodies to D pteronyssinus had been undetectable at all time points during the first year in the study of ‘unselected’ children. The present findings were similar. D pteronyssinus IgG4 was only found in 7 day sera and every child with detectable concentrations had a mother who was allergic to the dust mite, reflecting the higher concentrations that might be expected in such mothers. These antibodies may take longer to appear. They are certainly not present in all adults.

Prospective documentation of atopic manifestations in the large cohort of children allowed the present study to focus on the most obviously atopic and non-atopic individuals in an attempt to clarify possible differences in the response to the house dust mite.

Although the differences in D pteronyssinus IgG1 concentrations between atopic and non-atopic children at 6 and 12 months gave 0.01<p<0.05, the statistical significance of these concentrations was interpreted cautiously in the light of multiple comparisons. The power calculation, however, indicated that significant differences smaller than 40–70 AU/ml might not be picked up by a study of the present size. Secondly the measurements were analysed according to atopic status as a means of grouping the children into those who were most likely...

1/43 to 2·40 times higher than concentrations at 24 months, with 1·86 times as the best estimate (table 1).

Atopic children tended to have higher D pteronyssinus IgG1 concentrations than non-atopic counterparts at 6 and 12 months, with 0·01<p<0.05 (table 2) A trend for higher concentrations in the five dust mite sensitive individuals compared with the other 26 children was only seen at 3 months, with p=0·03 (fig 2).

The six children who had recurrent wheezing had no tendency towards having higher values at any age.

IgG4 antibody to D pteronyssinus was only found in 7 day sera and then in only three children. All three had mothers who had given florid skin reactions to D pteronyssinus with weals of 6 mm, 8 mm, and 11 mm in diameter respectively.

Discussion

Figure 2 Concentrations of IgG1 antibody to D pteronyssinus in five atopic children with dust mite sensitivity, 11 other atopic children, and 15 non-atopic children during the first two years of life. Median concentrations in the atopic and non-atopic subgroups at each age are indicated by the horizontal bars.

Table 1 Ratio of D pteronyssinus IgG1 antibody concentrations between successive age groups

<table>
<thead>
<tr>
<th>D pteronyssinus IgG1 concentration ratio</th>
<th>Geometric mean ratio</th>
<th>95% Confidence interval</th>
<th>p Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 day:3 months</td>
<td>5·15</td>
<td>4·27 to 6·21</td>
<td><0·0001</td>
</tr>
<tr>
<td>3 months:6 months</td>
<td>0·50</td>
<td>0·38 to 0·69</td>
<td>0·0001</td>
</tr>
<tr>
<td>6 months:12 months</td>
<td>0·70</td>
<td>0·56 to 0·89</td>
<td>0·0040</td>
</tr>
<tr>
<td>12 months:24 months</td>
<td>1·86</td>
<td>1·43 to 2·40</td>
<td><0·0001</td>
</tr>
</tbody>
</table>

*One sample t test.

Table 2 Comparison of median (range) D pteronyssinus IgG1 antibody concentrations between atopic and non-atopic children

<table>
<thead>
<tr>
<th>Age</th>
<th>D pteronyssinus IgG1 antibody concentration (AU/ml)</th>
<th>p Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atopic children (n=16)</td>
<td>Non-atopic children (n=15)</td>
</tr>
<tr>
<td>7 day</td>
<td>76·5 (32·9–14)</td>
<td>93 (29·3–44)</td>
</tr>
<tr>
<td>3 months</td>
<td>16 (12·7–51)</td>
<td>16 (11·6–2)</td>
</tr>
<tr>
<td>6 months</td>
<td>53·5 (15·2–201)</td>
<td>25 (15·4–81)</td>
</tr>
<tr>
<td>12 months</td>
<td>24 (17·2–57)</td>
<td>26 (17·3–57)</td>
</tr>
<tr>
<td>24 months</td>
<td>26 (12·5–149)</td>
<td>20 (13·3–119)</td>
</tr>
</tbody>
</table>

*Mann-Whitney test.
and least likely to develop asthma. Differences in the *D. pteronyssinus* antibody response may have been more apparent had it been possible to identify the future asthmatic children with greater precision.

It has been suggested that aeroallergen exposure in early infancy may represent a critical time in determining subsequent sensitisation and disease manifestation. The present data intimates that *D. pteronyssinus* IgG antibody responses may be maximal during infancy. The highest IgG1 responses at 6 months and thereafter were not, however, seen in those who developed IgE sensitisation to the dust mite (fig 2). Dust mite sensitivity was based on data from the first two years of life. Out of 80 children in the cohort followed up to two years, only six had given positive skin prick tests to *D. pteronyssinus* of which five were in the present study. Clearly, many more of the children are likely to develop dust mite sensitivity when they are older.

This study demonstrates that IgG antibody responses to *D. pteronyssinus* during the first two years in children predisposed to atopic disease are predominantly in the IgG subclass. Higher *D. pteronyssinus* IgG1 concentrations at one year than at two years may reflect greater exposure or responsiveness. Finally the tendency for higher *D. pteronyssinus* IgG1 concentrations at 6 and 12 months in children with atop manifestation in the first two years may become more clear cut in later years when analyses are made according to the presence of asthma.

We would like to thank the children and their parents for participation in the study, Miss Maria Sorooshian for help with the total serum IgE measurements, Miss Fiona Reid for statistical advice, and the National Asthma Campaign, Children Nationwide, and the Wellcome Trust for generous support.

Early immune responses to Dermatophagoides pteronyssinus and atopic predisposition.
R G Ruiz, D M Kemeny, F Mariani and J F Price

Arch Dis Child 1992 67: 1023-1026
doi: 10.1136/adc.67.8.1023

Updated information and services can be found at:
http://adc.bmj.com/content/67/8/1023

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/