Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis

Giorgio Senaldi, Bernard Portmann, Alex P Mowat, Giorgina Mieli-Vergani, Diego Vergani

Abstract

The portal tract mononuclear cell infiltrate has been characterised in 28 liver biopsy samples showing features of chronic aggressive hepatitis from 12 patients with autoimmune chronic active hepatitis, 12 with primary sclerosing cholangitis, and four with other chronic liver diseases (two with α1-antitrypsin deficiency, one with Wilson's disease, and one with chronic hepatitis B infection). In all patients liver disease had started in childhood. The mononuclear cell infiltrate was investigated by a two-step immunoperoxidase technique using monoclonal antibodies to: total, α/β T cell receptor positive, helper/inducer, suppressor/cytotoxic T lymphocytes; B lymphocytes; killer/natural killer cells; monocyte/macrophages; and to the activation markers HLA-DR antigens, interleukin 2 receptor (IL-2R), transferrin receptor, and F2Ag. In all samples the infiltrate consisted of mainly α/β T cell receptor T lymphocytes. Although T helper/inducer cells predominated in patients with autoimmune chronic active hepatitis, T suppressor/cytotoxic lymphocytes were preponderant in patients with primary sclerosing cholangitis and the other chronic liver diseases. Killer/natural killer cells accounted for up to 25% of the mononuclear cell infiltrate in patients with autoimmune chronic active hepatitis, being rare or absent in the other diseases. Monocytes/macrophages were always found, but they were more numerous in primary sclerosing cholangitis than in the other chronic liver diseases. B lymphocytes were rare or absent in all subjects. Activated mononuclear cells were present in all subjects, but although in patients with autoimmune chronic active hepatitis and primary sclerosing cholangitis most cells of the infiltrate expressed HLA-DR antigens and up to 75% IL-2R, in other forms of chronic liver diseases HLA-DR positive cells were less common and IL-2R positive cells were rare or absent. These results show that the cells responsible for the histological characteristics of chronic aggressive hepatitis vary in their functional phenotype and state of activation according to the type of underlying liver disorder, confirming the involvement of different pathogenetic mechanisms.

(Mononuclear cell infiltrate and piecemeal necrosis are the histological hallmarks of chronic aggressive hepatitis.1, 2 They are observed in a number of chronic liver diseases of various aetiologies. It is believed that among the infiltrating mononuclear cells are the effectors of piecemeal necrosis and the stimulators of fibrogenesis, which ultimately result in loss of hepatic parenchyma and cirrhosis.3

Since monoclonal antibodies have been available for immunohistochemical use, several studies characterising the mononuclear cell infiltrate have been performed in adult patients with different forms of chronic aggressive hepatitis, including autoimmune chronic active hepatitis,4–6 hepatitis B virus related chronic active hepatitis,4–10 primary biliary cirrhosis,4, 6, 8, 11–12 primary sclerosing cholangitis,11–13 chronic alcoholic hepatitis,6, 14 and non-A–non-B chronic active hepatitis.6 In childhood, the histological picture of chronic aggressive hepatitis, characteristic of chronic active hepatitis, is also often found in patients with primary sclerosing cholangitis,15 hepatitis B virus related chronic liver disease,16 Wilson's disease,17 and occasionally α1-antitrypsin deficiency.18 To date no study characterising the mononuclear cell infiltrate in children with chronic liver diseases has been reported. Moreover, although circulating activated T lymphocytes in various forms of chronic aggressive hepatitis have been considered to be of pathogenic and clinical importance,19–21 in only three studies has the expression of activation markers on the hepatic mononuclear cell infiltrate been investigated.8, 10, 13

We have characterised the portal tract mononuclear cell infiltrate in liver biopsy samples from children with chronic liver diseases and features of chronic aggressive hepatitis using a panel of monoclonal antibodies directed against markers of function and activation.

Patients, materials, and methods

PATIENTS

Twenty eight subjects (18 female patients; median age 12 years, range 1–20 years) with chronic liver disease starting in childhood and a histological picture of chronic aggressive hepatitis at presentation were studied (tables 1–3). Three of these subjects, all with chronic active hepatitis, were older than 16 years of age (17, 18, and 20 years) at the time of study but were 10, 11, and 13 years old at presentation. Liver disease was considered to be active when the total histopathological score was greater than 3 (see later) or values of aspartate transaminase were more than twice the upper normal value (45 IU/l), or both.

Twelve patients had autoimmune chronic active hepatitis diagnosed according to internationally agreed criteria22 (table 1). Three were
tested before treatment was started and had high values of aspartate transaminase, IgG, non-organ specific autoantibodies, and the presence of piecemeal necrosis in the liver biopsy sample. Seven were tested while receiving immunosuppressive treatment (azathioprine 1–1.5 mg/kg/day and prednisolone 0–5–2 mg/kg/day in six patients; prednisolone 0–5 mg/kg/day in one patient); three had signs of active disease with increased levels of aspartate transaminase, IgG, autoantibodies, and piecemeal necrosis at histology. The remaining four treated patients and two further patients tested during remission in the absence of treatment, had no biochemical, immunological, nor histological evidence of active disease. Three of the 12 children had associated cirrhosis.

Twelve children had primary sclerosing cholangitis (table 2). All had characteristic endoscopic retrograde cholangiopancreatographic changes and 10 had associated inflammatory bowel disease. Three were tested at diagnosis before treatment and nine while receiving treatment (prednisolone 0–5–1 mg/kg/day in five patients; azathioprine 1–1.5 mg/kg/day and prednisolone 0–5 mg/kg/day in two patients; penicillamine 20 mg/kg/day in one patient; sulphasalazine (Salazopyrin, Kabi Pharmacia),

Table 1 Clinical, biochemical, immunological, and histological details of the patients with autoimmune chronic active hepatitis at the time of testing

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Disease status</th>
<th>Immunosuppressive treatment</th>
<th>Cirrhosis</th>
<th>Portal tract infiltrate</th>
<th>Piecemeal necrosis</th>
<th>Aspartate transaminase (IU/l)</th>
<th>IgG (g/l)</th>
<th>Autoantibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>13</td>
<td>Active</td>
<td>Pred/aza</td>
<td>Present</td>
<td>2</td>
<td>2</td>
<td>120</td>
<td>23-7</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>15</td>
<td>Inactive</td>
<td>None</td>
<td>Present</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>7-3</td>
<td>Positive</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>20</td>
<td>Inactive</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>ND</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>13</td>
<td>Inactive</td>
<td>None</td>
<td>Absent</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>11-5</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>17</td>
<td>Inactive</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>13-3</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>15</td>
<td>Inactive</td>
<td>None</td>
<td>Absent</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>14-2</td>
<td>Negative</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>18</td>
<td>Active</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>3</td>
<td>2</td>
<td>37</td>
<td>19-5</td>
<td>Negative</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>16</td>
<td>Active</td>
<td>Pred</td>
<td>Present</td>
<td>3</td>
<td>3</td>
<td>157</td>
<td>20-6</td>
<td>Positive</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>12</td>
<td>Active</td>
<td>None</td>
<td>Absent</td>
<td>4</td>
<td>4</td>
<td>172</td>
<td>50-3</td>
<td>Positive</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>15</td>
<td>Inactive</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>31</td>
<td>11-7</td>
<td>Negative</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>15</td>
<td>Active</td>
<td>None</td>
<td>Absent</td>
<td>3</td>
<td>2</td>
<td>1260</td>
<td>9-2</td>
<td>Negative</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>5</td>
<td>Active</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>2</td>
<td>185</td>
<td>21-8</td>
<td>Negative</td>
</tr>
</tbody>
</table>

*Pred=prednisolone; azaa=azathioprine.
*Liver biopsy samples were assessed semiquantitatively, as described in text.
*Normal values <45 IU/l.
*Normal values for children aged between 2 and 5 years >5–<17 g/l; 5 and 16 years >7–<18 g/l.
*Titres >1:40. ANA=antinuclear antibodies; ASMA=smooth muscle antibody; LKM1=liver kidney microsomal antibody type 1. ND=not determined.

Table 2 Clinical, biochemical, immunological, and histological details of the patients with sclerosing cholangitis at the time of testing

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Disease status</th>
<th>Immunosuppressive treatment</th>
<th>Cirrhosis</th>
<th>Portal tract infiltrate</th>
<th>Piecemeal necrosis</th>
<th>Aspartate transaminase (IU/l)</th>
<th>IgG (g/l)</th>
<th>Autoantibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>10</td>
<td>Active</td>
<td>Pred</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>543</td>
<td>35-1</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>8</td>
<td>Active</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>150</td>
<td>20-4</td>
<td>Positive</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>7</td>
<td>Inactive</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>47</td>
<td>7-4</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>15</td>
<td>Inactive</td>
<td>Pred</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>28</td>
<td>12-5</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>12</td>
<td>Active</td>
<td>Pred/aza</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>109</td>
<td>19-8</td>
<td>Positive</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>6</td>
<td>Active</td>
<td>Pred</td>
<td>Absent</td>
<td>3</td>
<td>1</td>
<td>98</td>
<td>12-2</td>
<td>Negative</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>6</td>
<td>Inactive</td>
<td>Pred</td>
<td>Absent</td>
<td>3</td>
<td>1</td>
<td>37</td>
<td>25-0</td>
<td>Positive</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>12</td>
<td>Active</td>
<td>Pred</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>218</td>
<td>27-3</td>
<td>Positive</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>5</td>
<td>Active</td>
<td>None</td>
<td>Absent</td>
<td>2</td>
<td>1</td>
<td>197</td>
<td>28-5</td>
<td>Positive</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>16</td>
<td>Active</td>
<td>None</td>
<td>Present</td>
<td>3</td>
<td>3</td>
<td>372</td>
<td>41-3</td>
<td>Positive</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>12</td>
<td>Active</td>
<td>None</td>
<td>Present</td>
<td>2</td>
<td>2</td>
<td>110</td>
<td>16-4</td>
<td>Negative</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>12</td>
<td>Active</td>
<td>None</td>
<td>Present</td>
<td>2</td>
<td>3</td>
<td>740</td>
<td>38-1</td>
<td>Positive</td>
</tr>
</tbody>
</table>

*Pred=prednisolone; azaa=azathioprine.
*Liver biopsy samples were assessed semiquantitatively, as described in text.
*Normal values <45 IU/l.
*Normal values for children aged between 2 and 5 years >5–<17 g/l; 5 and 16 years >7–<18 g/l.
*Titres >1:40. ANA=antinuclear antibodies; ASMA=smooth muscle antibody; LKM1=liver kidney microsomal antibody type 1. ND=not determined.

Table 3 Clinical, biochemical, immunological, and histological details of the patients with other forms of chronic aggressive hepatitis

<table>
<thead>
<tr>
<th>Patient No (diagnosis)</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Disease status</th>
<th>Immunosuppressive treatment</th>
<th>Cirrhosis</th>
<th>Portal tract infiltrate</th>
<th>Piecemeal necrosis</th>
<th>Aspartate transaminase (IU/l)</th>
<th>IgG (g/l)</th>
<th>Autoantibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (A1ATD) M 1 Active</td>
<td>F</td>
<td>1</td>
<td>None</td>
<td>Present</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>147</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>2 (A1ATD) F 12 Active</td>
<td>F</td>
<td>12</td>
<td>None</td>
<td>Present</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>142</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>3 (WHD) M 9 Active</td>
<td>F</td>
<td>9</td>
<td>None</td>
<td>Present</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>490</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4 (HBV) F 5 Active</td>
<td>F</td>
<td>5</td>
<td>Active</td>
<td>None</td>
<td>Absent</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>16-7</td>
<td>Negative</td>
</tr>
</tbody>
</table>

*A1ATD=α1-antitrypsin deficiency; WHD=Wilson’s disease; and HBV=hepatitis B virus.
*Liver biopsy samples were assessed semiquantitatively, as described in text.
*Normal values <45 IU/l.
*Normal values for children aged between 2 and 5 years >5–<17 g/l; 5 and 16 years >7–<18 g/l.
*Titres >1:40. ANA=antinuclear antibodies; ASMA=smooth muscle antibody; LKM1=liver kidney microsomal antibody type 1. ND=not determined.
BIOPSY SAMPLES

Liver tissue was obtained for diagnostic or management purposes using a 1-4 mm diameter Menghini needle. Informed consent for the liver biopsy was given by the parents of all children. Three to five millimetres of each biopsy sample were embedded in OCT medium (BDH, Poole, UK) and immediately stored in liquid nitrogen before immunohistochemical analysis; most of the specimen was fixed in formalin and processed for routine diagnostic histopathological examination. Liver biopsy samples were assessed for portal tract infiltration and piecemeal necrosis using a semiquantitative scale according to Scheuer (none = 1, mild = 2, moderate = 3, severe = 4).

IMMUNOLOGICAL REAGENTS

Most of the monoclonal antibodies (table 4) used in this study were purified by protein A or ion exchange chromatography from the supernatant or the ascitic fluid of hybridoma (American Type Culture Collection, Rockville) cultures in vitro or in vivo respectively. WT31 was purchased from Becton Dickinson. The monoclonal antibody BE3F9 (American Type Culture Collection) directed to bovine insulin was used as control.

Peroxidase conjugated rabbit antimouse immunoglobulin antisera (Dakopatts, High Wycombe) was used to label the monoclonal antibodies in a two step immunoperoxidase technique. Immunological reagents were used at saturating concentrations, as determined in preliminary titration experiments using normal lymphoid tissue.

STAINING PROCEDURE

The biopsy samples were cut in a cryostat (Bright, Huntingdon) and 5 µm thick sections were obtained and placed on to slides which had previously been coated with a 0-01% solution of poly-L-lysine and allowed to dry.

Sections were allowed to air dry for four to six hours, fixed in a 1:1 mixture of acetone and chloroform for 10 minutes and washed in three changes of phosphate buffered saline (pH 7-4) for five minutes each.

To block the endogenous peroxidase, sections were covered with a 1% solution of hydrogen peroxide in phosphate buffered saline for 20 minutes. After washing, to block non-specific binding, sections were incubated for 10 minutes with phosphate buffered saline containing 10% normal rabbit serum and then incubated for 30 minutes with a dilution in phosphate buffered saline of the respective monoclonal antibody. Sections were washed again and incubated with a 5% dilution in phosphate buffered saline of peroxidase conjugated rabbit antimouse immunoglobulin, which contained 5% normal AB serum, to prevent possible cross reactions between the monoclonal antibodies and human immunoglobulin present on the tissue section. Sections were then washed, immersed for eight minutes in a solution of 0-6 mg/ml of diamobenzidine tetrahydrochloride and 0-03% hydrogen peroxide in phosphate buffered saline, rinsed in tap water, counterstained with Mayer’s haematoxylin, washed again extensively in tap water, and finally mounted with a 9:1 mixture of glycerol and phosphate buffered saline.

MICROSCOPIC ANALYSIS

Stained and unstained mononuclear cells in one to three portal tracts were counted using light microscopy by an observer unaware of the clinical details. The percentage of positive cells was calculated and expressed semiquantiitatively, with 0 = no positive cells, 1 = minimal (<10%), 2 = mild (>10%, <25%), 3 = moderate (>25%, <50%), 4 = abundant (>50%, <75%), and 5 = very abundant (>75%) amounts of positive cells.

STATISTICAL ANALYSIS

Positivety scores and the CD4:CD8 ratios were statistically analysed using Wilcoxon’s rank sum test and Spearman’s rank correlation method.
Results
Stained liver sections were well preserved and tissue structures were easily recognisable. The amount of the mononuclear cell infiltrate in the portal tracts was more abundant in patients with active than inactive disease irrespective of treatment. No positive staining was observed using the control monoclonal antibodies, whereas positive cells labelled by the relevant monoclonal antibodies were identified by the reaction product deposited along their membranes. The amounts of mononuclear cell subsets in portal tracts are given in table 5. Although the numbers of cells varied proportionally with the magnitude of the cellular infiltrate, the tissue distribution of the cells belonging to a particular subset tended to be constant within a given disease.

Results obtained using the monoclonal antibody WT31 were similar to those obtained with OKT3, suggesting the existence of a homogeneous mononuclear cell subset simultaneously bearing T cell receptor 1 and CD3. T Lymphocytes (CD3 positive) were the most common infiltrating element in all disorders. When they were subtyped, helper/inducer T cells (CD4 positive) were the most common in autoimmune chronic active hepatitis, were as numerous as suppressor/cytotoxic T cells (CD8 positive) in primary sclerosing cholangitis, and were in a minority in the other forms of chronic aggressive hepatitis, in which suppressor/cytotoxic T cells were almost the only lymphocytes present. The CD4 to CD8 ratio was significantly higher in biopsy samples from patients with autoimmune chronic active hepatitis than in those from children with primary sclerosing cholangitis (p<0.05) and in the latter it was higher compared with those from patients with other forms of chronic aggressive hepatitis (p<0.01). Independent of diagnosis, helper/inducer T cells tended to occupy the central areas of the portal tracts (fig 1), whereas suppressor/cytotoxic T cells formed the majority in areas of piecemeal necrosis and could often be observed at the front of the infiltrate invading the hepatic lobule (fig 2). In contrast with helper/inducer T cells, which tended to remain confined within the portal tract, suppressor/cytotoxic T cells could also be identified throughout the lobule, occupying perisinusoidal positions.

B lymphocytes (CD21 positive cells) were rarely or never found in the liver mononuclear cell infiltrate. In follicle-like lymphoid aggregates observed in the portal tracts from two patients with autoimmune chronic active hepatitis, three with primary sclerosing cholangitis, and one with α1-antitrypsin deficiency, however, B cells represented the main constituents and also displayed the receptors for transferrin and interleukin 2 (fig 3).

Table 5 Median (range) of positivity scores and CD4/CD8 ratios of portal tract mononuclear cell subsets in patients with autoimmune chronic active hepatitis, primary sclerosing cholangitis, or other forms of chronic active hepatitis

<table>
<thead>
<tr>
<th>Function markers:</th>
<th>Autoimmune chronic active hepatitis</th>
<th>Primary sclerosing cholangitis</th>
<th>Other forms of chronic active hepatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>4 (4–5)</td>
<td>4 (4–5)</td>
<td>4 (4–5)</td>
</tr>
<tr>
<td>CD4</td>
<td>4 (4–5)</td>
<td>3 (2–4)</td>
<td>3 (2–4)</td>
</tr>
<tr>
<td>CD8</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>CD21</td>
<td>2 (0–1)</td>
<td>1 (0–1)</td>
<td>1 (0–1)</td>
</tr>
<tr>
<td>CD16</td>
<td>1 (0–1)</td>
<td>3 (0–1)</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>CD11b</td>
<td>1 (0–1)</td>
<td>3 (0–1)</td>
<td>2 (1–3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activation markers:</th>
<th>Autoimmune chronic active hepatitis</th>
<th>Primary sclerosing cholangitis</th>
<th>Other forms of chronic active hepatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-DR</td>
<td>5 (4–5)</td>
<td>4 (4–5)</td>
<td>4 (2–4)</td>
</tr>
<tr>
<td>CD25 (IL2R)</td>
<td>3 (0–1)</td>
<td>3 (0–1)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>CD71 (TFR)</td>
<td>2 (0–2)</td>
<td>3 (0–2)</td>
<td>3 (0–2)</td>
</tr>
<tr>
<td>4F2Ag</td>
<td>3 (0–2)</td>
<td>3 (0–2)</td>
<td>2 (1–3)</td>
</tr>
</tbody>
</table>

*Number of positive cells: 0 = none; 1 = <10%; 2 = 10%, <25%; 3 = 25%, <50%; 4 = >50%, <75%; 5 = >75%.

Figure 1 Liver section from a patient with autoimmune chronic active hepatitis stained for the CD8 molecule (suppressor/cytotoxic T lymphocytes). (Immunoperoxidase stain×200.)

Figure 2 Liver section from a patient with primary sclerosing cholangitis stained for the CD8 molecule (suppressor/cytotoxic T lymphocytes). Positively stained suppressor/cytotoxic T cells project inside the hepatic lobule. (Immunoperoxidase stain×200.)

Figure 3 Liver section from a patient with autoimmune chronic active hepatitis stained for the CD21 molecule (B-lymphocytes). B Cells are positively stained in a follicle-like structure in a portal tract. (Immunoperoxidase stain×200.)
Killer/natural killer cells (CD16 positive) were the more numerous subset in patients with autoimmune chronic active hepatitis after T lymphocytes, being present in all patients and forming up to a quarter of the mononuclear cell infiltrate. Occasionally they could also be seen scattered within the liver lobule, with a pattern of distribution similar to that described for suppressor/cytotoxic T cells. In patients with primary sclerosing cholangitis and the other forms of chronic aggressive hepatitis they were rare or absent.

Monocytic cells (CD11b positive) were found in all patients, but they were relatively more numerous in patients with primary sclerosing cholangitis, α2-antitrypsin deficiency, Wilson's disease, and hepatitis B virus related chronic active hepatitis than in autoimmune chronic active hepatitis, in which they were a rare, though consistent, finding.

Mononuclear cells expressing markers of activation were detected in all patients. HLA-DR was the activation marker most often encountered, and in all patients with autoimmune chronic active hepatitis and primary sclerosing cholangitis it was expressed on most of the mononuclear cell infiltrate. IL-2R (CD25) was also found on the mononuclear cell infiltrate in all patients with autoimmune chronic active hepatitis and primary sclerosing cholangitis (fig 4), the number of positive cells ranging from minimal to abundant, although it was a rare finding in the other forms of chronic aggressive hepatitis. Transferrin receptors (CD71) and the antigens targeted by 4F2 (4F2Ag) were found in all patients with chronic aggressive hepatitis investigated without variations among different forms of the disease.

The numbers of cells displaying activation markers varied widely among patients, especially those with autoimmune chronic active hepatitis and primary sclerosing cholangitis. Untreated patients with either autoimmune chronic active hepatitis or primary sclerosing cholangitis tended to have scores of cells positive for activation markers higher than those receiving treatment; this difference was statistically significant for IL-2R (p < 0.04 and p < 0.02 respectively) (fig 5). Scores of positive cells tended to parallel the activity of the disease and the extent of portal tract infiltrate and piecemeal necrosis, but they were not affected by the presence or absence of cirrhosis.

Discussion

This study shows that T lymphocytes predominate in the portal tract infiltrate of children with various forms of chronic aggressive hepatitis, but the distribution of their markers of function and activation differs according to diagnosis.

Two major patterns of mononuclear cell infiltrate were observed: one typical of autoimmune chronic active hepatitis (characterised by helper/inducer T cells outnumbering suppressor/cytotoxic T cells, a small amount of killer/natural killer cells and a high proportion of activated cells) and one typical of primary sclerosing cholangitis (characterised by similar amounts of helper/inducer and suppressor/cytotoxic T cells, mild to moderate amounts of monocytes/macrophages, with most cells being activated). In the chronic aggressive hepatitis due to α2-antitrypsin deficiency, Wilson's disease, or chronic hepatitis B infection we observed abundant suppressor/cytotoxic T cells prevailing over helper/inducer T cells and rarer cells expressing IL-2R.

Independent of the cause of chronic aggressive hepatitis or disease activity, akin to observations in adults,4,7 9 10 12 13 T lymphocytes were the major component of the portal tract mononuclear cell infiltrate in all the children studied. In addition, we have found that the infiltrating T cells expressed mainly T cell receptor 1. Further studies using monoclonal antibodies directed against the γδ T cell receptor25 26 will elucidate the presence of T cell receptor 2 positive T lymphocytes.

T cells expressing the suppressor/cytotoxic phenotype were similarly represented in all patients and were concentrated at the periphery of the portal tract and in areas of piecemeal necrosis. This distribution suggests that these cells are cytotoxic lymphocytes and mediate the liver cell damage typical of chronic aggressive hepatitis.

Figure 4 Liver section from a patient with primary sclerosing cholangitis stained for the CD25 molecule. Positive cells are seen in the portal tract. (Immunoperoxidase stain ×200.)

Figure 5 Positivity scores for the CD25 molecule in the patient groups divided according to active and inactive disease. ACAH = autoimmune chronic active hepatitis; PSC = primary sclerosing cholangitis; Other CAH = other forms of chronic aggressive hepatitis; A = active; I = inactive.
hepatitis, irrespective of its aetiology. In contrast
with suppressor/cytotoxic T cells, the proportion of
helper/inducer T cells was markedly different in
the various groups of patients with chronic
aggressive hepatitis studied. Similar to observa-
tions in adults,3 6 12 13 numerous CD4 positive
T lymphocytes were found in the biopsy samples
from children with autoimmune chronic active
hepatitis and primary sclerosing cholangitis,
being especially abundant in the former.
Independent of diagnosis, these regulatory
lymphocytes were particularly prominent in the
centre of the portal tracts, suggesting that they
may orchestrate local immune reactions, through
antigen recognition, activation of cytotoxic T
cells, B lymphocytes and macrophages, and
cytokine production.27 It is also possible that
some of them may modulate tissue damaging
immune reactions, as CD4 positive T lympho-
cytes can act as suppressor cells.28 In contrast
with the results in autoimmune chronic active
hepatitis and primary sclerosing cholangitis,
CD4 positive cells were present in small numbers
in children with other forms of chronic aggres-
sive hepatitis.

The CD4:CD8 ratio was significantly higher
in patients with autoimmune chronic active
hepatitis than in those with primary sclerosing
cholangitis and in the latter when compared
with the other forms of chronic aggressive
hepatitis. This finding is similar to those obtained
in a number of studies of adults3 6 12 13 and
suggests that the CD4:CD8 ratio in the portal
tract mononuclear cell infiltrate in liver biopsy
samples with features of chronic aggressive
hepatitis could be of diagnostic value. The
CD4:CD8 ratio of greater than unity observed
in the liver in autoimmune chronic active hep-
titis reflects the CD4:CD8 ratio of the activated
T lymphocytes in the peripheral blood of
children with this disease.30 Similarly, the CD4:
CD8 ratio of the infiltrate in patients with
primary sclerosing cholangitis parallels the ratio
observed within activated T cells in the peripheral
blood.21

B lymphocytes were seen at low levels or not
at all, whatever the cause of chronic aggressive
hepatitis. This observation is surprising because
of the high immunoglobulin production and the
high titres of liver and non-liver specific auto-
antibodies which characterise diseases such as
autoimmune chronic active hepatitis and primary
sclerosing cholangitis. In four biopsy samples,
however, including two patients with auto-
immune chronic active hepatitis and one with
primary sclerosing cholangitis, B lymphocytes
were observed in follicle-like structures present
within some portal tracts, confirming a similar
finding reported previously.29 These structures
appear to be unevenly distributed and may have
been absent in the other biopsy samples, owing
to the small amount of tissue studied. Such an
organisation of rudimentary lymphoid tissue
within the liver is likely to be a consequence of
intense cytokine stimulation in the portal tracts,
and this view is supported by evidence that the
B cells observed in these structures expressed
activation markers.

Killer/natural killer cells, though not
numerous, were the most common subset after
T lymphocytes in autoimmune chronic active
hepatitis, whereas they were rare or absent in
the other disorders. This observation reinforces
the idea that non-major histocompatibility com-
plex restricted cytotoxicity, including antibody
dependent cell mediated cytotoxicity, is likely
to be of importance in the development of liver
injury in autoimmune chronic active hepatitis.30 31

Monocytes were always identified, but
though they were rare in patients with auto-
immune chronic active hepatitis, they were
found in small or moderate numbers in patients
with primary sclerosing cholangitis and the
other forms of chronic aggressive hepatitis,
in which they could be involved in the generation
of tissue damage, possibly by effecting antibody
dependent cell mediated cytotoxicity.32

In autoimmune chronic active hepatitis and
primary sclerosing cholangitis most mononuclear
cells infiltrating the portal tracts displayed
activation markers, indicating that they actively
affect the immune response. The finding that
reduced activation marker expression occurred
with treatment and in inactive disease also
supports this conclusion. This observation is
consistent with the results obtained by measuring
IL-2R positive T lymphocytes and soluble
IL-2R in children with primary sclerosing
cholangitis.20 33 Interestingly, in patients
with primary sclerosing cholangitis the propor-
tion of peripheral blood T lymphocytes express-
ing IL-2R is markedly lower than in auto-
immune chronic active hepatitis, irrespective of
disease activity,20 though the proportion of
these cells in the portal tract inflammatory infil-
trate is as high as in autoimmune chronic active
hepatitis. This finding may reflect a more
generalised autoimmune reaction in auto-
immune chronic active hepatitis, where some of
the peripheral IL-2R positive T cells may be
sensitised to tissues other than the liver.

In conclusion, this study shows the existence
of different patterns of expression of markers of
function and activation in the portal tract
mononuclear cell infiltrate in patients with
autoimmune chronic active hepatitis and primary
sclerosing cholangitis, and corroborates our
previous observations on peripheral blood
mononuclear cells,34 suggesting that despite the
clinical and histological similarities the mecha-
nisms leading to autoimmune liver damage in
these two diseases are different.

Dr Senaldi was a research fellow in the department of immunology
of King's College School of Medicine and Dentistry and was
supported by the Royal Society, UK. Dr Mieli-Vergani is
supported by the Children's Liver Disease Foundation, formerly
the Micheal McGough Foundation against Liver Disease in
Children, UK. B73.1 and anti-Tac were a gift of Dr B Peussa
and Dr T A Waldmann respectively.

1 De Grootte J, Desmet VJ, Gedigk P, et al. A classification of
2 Scheuer PJ. Chronic hepatitis: a problem for the pathologist.
Histopathology 1977;ii:5-19.
3 Alexander G, Williams R. Characterisation of the mono-
uclear cell infiltrate in piecemeal necrosis. Lab Invest
4 Eggink HF, Hurtough HJ, Huisem S, Gips CH, Poppema S.
Cellular and humoral immune reactions in chronic active
liver diseases. I. Lymphocyte subsets in liver biopsies of
patients with untreated idiopathic autoimmune hepatitis,
chronic active hepatitis B and primary biliary cirrhosis.
Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis

1453

11 Si L, Whiteside TL, Schade RR, Starzl TE, Van Thiel D. T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls. *J Clin Immunol* 1984;4:262-72.
Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis.
G Senaldi, B Portmann, A P Mowat, G Mieli-Vergani and D Vergani

Arch Dis Child 1992 67: 1447-1453
doi: 10.1136/adc.67.12.1447

Updated information and services can be found at:
http://adc.bmj.com/content/67/12/1447

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/