Oxygen saturation and breathing patterns in infancy. 1: Full term infants in the second month of life

V A Stebbens, C F Poets, J R Alexander, W A Arrowsmith, D P Southall

Abstract

Overnight 12 hour tape recordings were made of arterial oxygen saturation (SaO₂), pulse oximeter in the beat to beat mode and abdominal wall breathing movement on 67 healthy, full term infants between the ages of 29 and 54 (median 39) days. The median baseline SaO₂ during regular breathing was 99.8% (range 97.0–100%). Fifty four infants (81%) had shortlived episodes during which SaO₂ fell to 80% or less (desaturation); the median rate was 0–9 desaturations/hour, and the median duration of each desaturation was 1–2 seconds. The 97th centile value for the duration of all episodes in which SaO₂ fell to ≤80% was 4–0 seconds. The frequency of desaturations was significantly higher, and their duration significantly longer, when the breathing pattern was non-regular rather than regular. The percentage of apnoeic pauses (≥4 seconds in duration) followed by a desaturation was higher during non-regular than regular breathing; it was particularly high during periodic breathing.

A knowledge of normal variability of baseline measurements of oxygenation and of the relationship between oxygenation and breathing patterns in infants is essential to the use of pulse oximetry in clinical practice.

Pulse oximetry was introduced into clinical practice about 10 years ago. Since then many validation studies have been done with pulse oximeters made by different manufacturers. Some of these studies in infants have shown a close correlation with arterial oxygen saturation (SaO₂) measured by co-oximetry. It has been shown, however, that correlations might vary depending which pulse oximeter was used.

In addition to its clinical use in monitoring oxygenation, pulse oximetry may be of value in cardiorespiratory physiology. It is a non-invasive technique, and can provide immediate information about sudden changes in arterial oxygenation.

In the clinical management of patients with cardiac or respiratory failure, or both, when accurate information about baseline measurements of oxygenation is particularly valuable, pulse oximeters are generally used in an ‘averaging’ mode. In such modes the displayed values are calculated as an average of the saturation measurements at each pulse during the preceding 2–15 seconds. For research and diagnostic purposes, however, it is possible to use some instruments without averaging several pulses—that is, in a ‘beat to beat’ mode. This offers advantages: immediate information is available about any changes in oxygen saturation; these changes, combined with an assessment of the photoplethysmographic pulse waveforms, indicate when false saturation values are being caused by movement or other artefact; and, finally, artefactual signals are not averaged with non-artefactual signals.

Previous studies using pulse oximetry in infants have shown that sudden drops in oxygen saturation are relatively common in this age group, particularly in preterm infants and after short apnoeic pauses. To assess their clinical importance, reference data about patterns of oxygenation must be available. Baseline oxygenation and short lived episodes of hypoxaemia have therefore been documented from overnight 12 hour multichannel physiological recordings on a sample of 67 healthy infants in the second month of life. The relationship of these hypoxaemic episodes to breathing patterns and apnoeic pauses was determined.

Patients and methods

Using a systematic sampling procedure, 69 infants were recruited immediately after birth from all those born in one hospital who had a gestational age of at least 37 weeks and seemed healthy on medical examination in the nursery and subsequently. The study was performed at a median age of 39 days (range 29–54, interquartile range (IQR) 35–43) in the infants’ homes. Recordings were made when the infants were in good health (that is, free of major symptoms from the parents’ report and the researcher’s observation) and not taking any drugs. Eight infants (12%) had minor problems at the time of recording (sniffly nose (n=2), thrush (n=2), colic (n=2), eye infection (n=1), and eczema (n=1)). Fully informed consent was obtained from the parents of all infants recruited.

Overnight multichannel physiological recordings started between 1830 and 2200 hours (median 2052) and lasted for a mean (SD) of 11.5 (1.1) hours. Recordings were made of arterial oxygen saturation and each photoplethysmographic pulse waveform from a pulse oximeter (Nellcor N100 with new software...
equivalent to N200 and specially modified to provide beat to beat data). The oximeter sensor was taped around the lateral edge of the infant's foot. In addition, abdominal breathing movements from a volume expansion sensor (Graseby Dynamics, in 73%) or respiratory inductance plethysmography system (Studley Data Systems, in 27%) were recorded. The volume expansion capsule was taped with concentric strips of adhesive tape (3M Micropore) midway between the umbilicus and xiphisternum. Inductance plethysmography was obtained using a purpose made vest (PK Morgan).

Data were recorded onto a four channel FM tape recorder (Racal, frequency response DC to 313 Hz, signal:noise ratio 47 dB/channel) at a tape speed of 15/16 inches/second. Oxygen saturation recordings were calibrated to markers of 0, 50, and 100% generated from the oximeter. The recordings were printed onto graph paper by an ink jet recorder at 3-2 mm/second. Two recordings (3%) had poor quality oxysignal desaturation signals throughout and were removed from the study. Analysis of the remaining 67 recordings was done manually by two experienced workers according to the following criteria:

- **Regular and non-regular breathing patterns**—A regular breathing pattern was signified by episodes of at least one minute in duration during which the abdominal wall movement waveform was steady in rate and amplitude. All periods of the recording not conforming to the above definition, or periods in which the steady pattern was disrupted by body movements, frequent sighs, or apnoeic pauses were classified as non-regular breathing patterns. Episodes of periodic apnoea were included in non-regular breathing patterns. The classification of regular breathing has previously been shown to be reproducible.

- **Pauses in breathing movements**—These were classified as apnoeic if they lasted for 4 seconds or more measured from the end of the expiratory movement waveform to the onset of the inspiratory movement waveform (fig 1). Pauses were classified according to their duration (4–0–7–9, 8–0–11–9, and ≥12 seconds). Episodes in which there were three or more successive apnoeic pauses, each separated by less than 20 breaths, were classified as periodic apnoea.

- **Baseline oxygen saturation and episodic desaturation**—Oxygen saturation measurements were made only after an assessment of the accompanying photoplethysmographic pulse waveforms. Any period in which the quality of this signal was unsatisfactory was excluded from the analysis (fig 1). The remaining oxygenation signal was measured in two ways. Baseline SaO2 was calculated for each episode of regular breathing by measuring the SaO2 values at the end inspiration for each of five successive breaths at the centre of each episode of regular breathing. These five breaths had to be at least 10 seconds away from sighs or apnoeic pauses.

During both regular and non-regular breathing patterns the duration of each episode in which SaO2 fell to 80% or below was measured (fig 1). The minimum duration measured was 0·3 seconds. These desaturations were classified as related to apnoeic pauses if the beginning of an apnoeic pause and of a subsequent desaturation were separated by a period of 2·0–12·0 seconds. This time was defined after measurement of the total response time of the pulse oximeter in the beat to beat mode and examination of pilot data.

Rates of desaturation/hour of artefact free signal and the mean durations of these episodes were calculated for each recording. The significance of the differences was assessed by the Wilcoxon signed rank test, and correlations were tested by the Spearman rank correlation coefficient. Results are expressed as median (range) for individual recordings.

**Results**

All measurements of oxygenation were correlated with postnatal age at the time of recording. Coefficients for these correlations were all close to zero, and there was thus no evidence that age had an influence on the results within the range studied. The data are therefore presented without reference to age.

The median duration of regular breathing pattern was 3·0 hours (range 1·1–5·8) and that of non-regular breathing pattern 8·8 hours (6·0–10·3). The median duration of artefact free SaO2 signal was 2·9 hours (1·1–5·4) during regular breathing pattern and 4·6 hours (2·3–6·9) during non-regular breathing pattern.

During the periods in which there was an artefact free SaO2 signal, all recordings showed apnoeic pauses, with a median value of 6·8 (0·4–72·0) pauses/hour. Thirty three infants (49%) had episodes of periodic apnoea. The median total duration of periodic apnoea in these infants was 0·3 (0·1–14·5) minutes/hour.

The median baseline SaO2 was 99·8% (range 97·0–100%). Analysis of variability in baseline SaO2 measurements within individual recordings showed a median SD of 0·2% (range 0–1·4%). There was therefore low variability in
baseline SaO$_2$ among different episodes of regular breathing in the same recording.

Of 67 recordings, 54 (81%) contained episodes in which the SaO$_2$ fell to 80% or below, with a median of 0-9 episodes/hour (range 0-15-1) for all recordings. The median of the mean duration of these episodes for individual recordings was 1-2 seconds (0-3-2-2). The median for the longest individual desaturation in each recording was 2-4 seconds (0-3-8-6). Looking at all the desaturations, 97% lasted less than 4-0 seconds (only 24 desaturations in 11 recordings lasting for 4-0 seconds or longer).

The median number of desaturations/hour was 0-0 (0-0-1-7) during regular breathing compared with 1-5 (0-23-1) during non-regular breathing (p<0.001) (fig 2). The median of the mean durations of desaturations was 0-8 seconds (0-3-1-6) during regular breathing compared with 1-1 seconds (0-3-2-9) during non-regular breathing (p<0.05). During regular breathing 98% of desaturations were associated with an apnoeic pause; during non-regular breathing this proportion was 65% (p<0.01). The proportion of apnoeic pauses followed by a desaturation (table) varied with the duration of pause and the breathing pattern. The proportion was lowest during regular breathing (regardless of duration) and highest during periodic apnoea, particularly in association with long pauses. The differences were significant when pauses of <8-0 seconds were compared with pauses of 8-0-11-9 seconds in duration during periodic apnoea (p<0-05), and when isolated short pauses during regular compared with non-regular breathing were compared (p<0-001). Pauses of ≥12-0 seconds were so infrequent (10 in eight infants) that they did not provide adequate information for analysis in any of the breathing/pause pattern categories.

To assess whether the infants with more pauses also had a higher percentage of pauses associated with desaturation we calculated the Spearman correlation coefficient for these two variables, but it was poor (r=0-23).

Discussion

We have studied reference data for variables concerning breathing movements patterns and oxygenation in full term infants at about 6 weeks of age. Interestingly, there were no obvious developmental changes in oxygenation over the age range included in the study. Analysis of similar recordings in a subgroup of infants studied sequentially between the ages of 6 weeks and 1 year showed no major changes in either baseline SaO$_2$ or short lived falls in SaO$_2$ during the period analysed (unpublished data).

Thus arterial oxygenation seems to be relatively stable beyond the neonatal period.

The distribution of regular and non-regular breathing patterns has been described by Richards et al. The present results are similar to those of that study, in which 24 hour recordings of breathing movements and electrocardiograms in infants of comparable age were analysed. Assuming that a regular breathing pattern is highly correlated with a state of quiet sleep, our finding of three hours of regular breathing during an overnight recording is comparable with figures given in other studies for the duration of quiet sleep in this age group. One limitation of this method is that both awake and active sleep periods are included in non-regular breathing. Information about differences in oxygenation and respiratory patterns between these states is therefore not available from this analysis.

Comparison of the frequency of apnoeic pauses with data from other studies is difficult, because there is no common definition of apnoeic pauses. Our results, however, are similar to those of Richards et al who included all apnoeic pauses of ≥3-6 seconds in duration.

The baseline oxygen saturation measurement made during regular breathing was high in all infants, with little variability between different measurement points in the same recording. Our values are higher than those given by Mok et al who used the same oximeter. They did not assess the quality of the photoplethysmographic waveforms, however, and so artefactually depressed values could have been incorporated in their results. In addition, their measurements were calculated as an average of all SaO$_2$ values occurring at a fixed sampling interval, so they potentially included desaturations in their analysis and failed to distinguish between breathing patterns.

Desaturations were present in most infants, but they were usually short, 97% being less than 4 seconds long. During regular breathing almost all desaturations followed an apnoeic pause. During non-regular breathing a third of the desaturations were not preceded by apnoeic pauses of ≥4-0 seconds or more in duration. Some of these latter desaturations may have reflected...
a response to pauses shorter than 4 seconds; others may have been accompanied by con-
tinued abdominal wall movements, with or
without continued airflow.7 Recordings
that include respiratory airflow would be required to
investigate these phenomena fully.

The proportion of apnoeic pauses followed by
a desaturation may be an indicator of the oxygen
stores in the lung, the oxygen consumption, and
of the matching of ventilation to perfusion.
Interestingly, less than half the recordings that
showed apnoeic pauses during regular breathing
showed any of these pauses followed by a
desaturation to 80% or less. The proportion of
short pauses associated with desaturations
increased significantly during non-regular bre-
thine. Active sleep is included in non-regular
breathing, and this increase between regular
and non-regular breathing patterns might, at
least in part, be explained by an increase in
oxygen consumption, and possibly a reduction
in intrapulmonary oxygen stores, during active
sleep.14 15

During periodic apnoea, over half of the 14
recordings showing longer pauses (8-0 to 11-9
seconds) had more than one third of such pauses
followed by a desaturation. Similar findings
about the effect of periodic breathing on oxyge-
nation were reported by Mok et al who, by
using methods that absorbed episodic desatura-
tion values into their average values of satu-
ration, found a mean decrease of 26% from
baseline measurements during periodic bre-
thine.13 As only a relatively small number of
infants in our study had apnoeic pauses of 8
seconds or longer, the apparently stronger in-
fluence of periodic breathing on oxygenation
remains a preliminary result.

Reference data about episodes of desaturation
in infants have not previously been published.
In this study we used a pulse oximeter that has
been validated against arterial line measure-
ments in infants.8 We also used the oximeter in
the beat to beat mode. Most infants, despite
a high baseline measurement of SaO2, showed
drops in oxygenation to levels below a threshold
which has been previously defined as indicating
an 'abnormal' reaction to an apnoeic pause.16 17

Most of the recorded episodes, however, were
brief (<4 seconds) and would not, therefore,
have been observed using a pulse oximeter that
averages SaO2 values over several seconds. In
the beat to beat mode, pulse oximeters can sense
short lived falls in SaO2 that are not seen with
the averaging modes used normally.

Because the short lived falls in SaO2, that were
identified by this pulse oximeter occurred in
healthy infants they must be regarded as nor-
mal. Variations in either baseline oxygenation
measurements, or in the duration or frequency
of episodes of desaturation beyond the range
given here, however, may indicate a clinically
relevant disturbance of oxygenation.

It might be argued that the short lived epis-
des of desaturation identified by this pulse oxi-
meter in the beat to beat mode are artefactual,
but their consistent relationship to apnoeic
pauses, and previous observations that similar
but more severe desaturations can occur during
cyanotic episodes that have been documented as
'real' by arterial blood gas analysis,18 suggest
that they do reflect true episodes of hypo-
xæmia. Moreover, similar short lived desaturas-
tions have been reported by other workers, not
only using pulse oximetry,19 but also ear oxi-
metry.20

Recordings of breathing movements and elec-
trocardiograms (pneuograms) are widely used
to study respiratory physiology in infants. The
frequency of apnoeic pauses and the quantity of
periodic breathing have been used to indicate
the need for home monitoring20 or treatment
with methylxanthines.21 From a physiological
viewpoint, however, hypoxæmia seems to be a
better indicator of the adequacy of ventilation
and ventilation/perfusion matching.18 Certainly
these present results indicate that any recording
of breathing movements without an indicator of
oxygenation will produce information that is
difficult to interpret. Firstly, there was poor
correlation between the frequency of apnoeic
pauses and the percentage of those pauses
accompanied by desaturation; secondly, about a
third of the desaturation episodes were not
related to apnoeic pauses; and finally, the
percentage of apnoeic pauses accompanied by epi-
soles of desaturation, particularly during
periodic apnoea, varied widely among indi-
vidual infants.

In conclusion, our results indicate the
importance of including oxygenation in studies
of respiratory physiology, whether these be on
healthy subjects or patients with symptoms.
Although an outlying result in either the base-
line oxygen saturation value or the frequency of
recurrent short lived falls in SaO2 may be help-
ful in assessing the severity of illness in infants
with symptoms, for instance during a respira-
tory tract infection, the prognostic value of out-
lying results in infants who are symptom free
remains unknown. Further prospective studies
are needed to answer this potentially important
question.

We thank the workers who gave careful technical
effort to the study: Mary Gray, who did the recordings, Pauline Mills and Jackie Kelly who made the measurements, and Linda Alexander
and Vivienne Taylor who carried out basic analyses.
Thanks also to the families in Doncaster who allowed us to use their time and
homes, and made the study possible. Technical advice was
given by Dr W New, and computing facilities were donated by Hewlett
Packard Ltd and Ashton-Tate Ltd. Mrs Stebbens was funded by
the Nuffield Foundation, Dr Poets by the Deutsche Forschung
Gemeinschaft, Bonn, Germany, and Dr Southall by the National
Heart and Chest Hospitals, and Nellcor Inc. The study was sup-
ported by the Foundation for the Study of Infant Death, Lon-
don, and by the Cot Death Fund at Doncaster Royal Infirmary.

1 Hay WW, Brockway JM, Eyzaquiire M. Neonatal pulse oxi-
metry: accuracy and reliability. Pediatrics 1989;83:
717-22.

2 Borer RA, Gottesfeld J, Shanaraj J, Lacorte MA, Parnell
AV, Walker P. Noninvasive pulse oximetry in children
with cyanotic congenital heart disease. Crit Care Med

3 Southall DP, Bignall S, Stebbens VA, Alexander JR, Rivers
R, Lissauer T. Pulse oximeter and transcutaneous arterial
oxygen measurements in neonatal and paediatric intensive

4 Fanconi S. Reliability of pulse oximetry in hypoxic infants.

5 Severinghaus JW, Naifeh KH, Koh SO. Errors in 14 pulse
oximeters during profound hypoxia. J Clin Monit 1989;5:
72-81.

6 Abraham NG, Stebbens VA, Samuels MP, Southall DP.
Investigation of cyanotic/apnoeic episodes and sleep-related
upper airway obstruction by long-term non-invasive
Oxygen saturation and breathing patterns in infancy. 1: Full term infants in the second month of life.


10 Hoppenbrouwers T, Hodgman J, Arakawa K, Sterman MB. Polysomnographic sleep and waking states are similar in subsequent siblings of SIDS and control infants during the first six months of life. Sleep 1989;12:265-76.


16 Coleman JM, Mannell MC, Bing DR, Hagen EA, Boros SJ. Two vs. four channel pneumograms: the issue of SaO₂ monitoring. Pediatr Res 1989;25:305A.


Oxygen saturation and breathing patterns in infancy. 1: Full term infants in the second month of life.

V A Stebbens, C F Poets, J R Alexander, W A Arrowsmith and D P Southall

Arch Dis Child 1991 66: 569-573
doi: 10.1136/adc.66.5.569