Letters to the editor

273


Dr Isaac's comments:

I certainly agree with Professor Dodge and Dr Sagarre that milk lipids may provide important protective effects. Further, I find the observation that alterations in the medium chain fatty acid composition of mouse milk may reduce the severity of infection from rotavirus, a non-enveloped virus, extremely interesting. We, of course, did not determine the effect of the stomach contents of infants fed the various formulas on non-enveloped viruses. Rather, our statement that milk fatty acids and monoglycerides have antiviral activity against enveloped viruses but not non-enveloped viruses was based upon the results of a number of studies by us and others showing that only enveloped viruses are inactivated by milk, not by pancreatin lipids.

In the early studies of Welsh et al. on enterovirus and herpes simplex virus type 1 (HSV-1) were inactivated by milk lipids but enterovirus-cocaine B4, a non-enveloped virus, was not.1 In addition, we found that human milk inactivated the enterovirus, West Nile virus, HSV-1 and the non-enveloped vaccinia virus and poliovirus.2 Milk lipids also have been shown to inactivate dengue virus3 and mouse mammary tumour virus; these are both enveloped viruses.

In vitro studies it has been found that purified free fatty acids and their derivatives inactivated the enveloped Sendai virus, Newcastle disease virus, influenza A virus, Sindbis virus, West Nile virus, HSV-1 and the non-enveloped vaccinia virus and poliovirus.3 Milk lipids also have been shown to inactivate dengue virus1 and mouse mammary tumour virus; these are both enveloped viruses.

These multiple findings suggest that the apparent protective effect of milk lipids against rotavirus infection observed by Dodge and Sagarre is due to different inactivation of the non-enveloped rotavirus. However, milk fatty acids may prevent the binding of rotavirus and other non-enveloped viruses to receptors or interfere with viral uncoating. Further studies are warranted to explore the observations by our group and others.


4 Sarkar NH, Charney J, Dion AS, Moore DH. Effect of bovine milk on enterovirus-47:3-11.

5 Kohn A, Gately LN, Inostroza M. Unconfirmed free fatty acids in enterovirus-47:3-11.


Fluorescein dilaurate test of exocrine pancreatic function in cystic fibrosis

SIR—I read with interest the paper by Drs Dalzell and Heat1 particularly as we had a very similar study published in the Archives of Disease in Childhood four years ago (and no reference was made)!2 In both studies the indexes and controls were similar in age and number, but we prescribed double the dose of fluorescein dilaurate than did Dalzell and Heat. Our study also demonstrated significantly different fluorescein dilaurate excretion ratios between patients with cystic fibrosis and normal subjects, with the ratios being significantly reduced in patients with cystic fibrosis (p<0.01). An additional component to our study was to compare the fluorescein dilaurate test with faecal chymotrypsin estimation. We found a positive correlation between the two tests (R=0·69, p<0·02).

Although the fluorescein dilaurate test appears to detect exocrine pancreatic insufficiency, in practice it is of limited value as it is in capsule form and not suitable for the age group in which the presentation of cystic fibrosis is most prevalent. We did explore the possibility of the test being used to titrate pancreatic supplement administration. If chol- terol ester hydrolase, which is responsible for liberating the fluorescein from fluorescein dilaurate, was incorporated into a pancreatic enzyme supplement, it may be possible to use the fluorescein dilaurate test to determine the most effective dosage of pancreatic enzyme for individual patients. Unfortunately this enzyme does not appear to be present in any of the commercially available preparations.

S J FORSYTH
Dundee General Hospitals, Ninewells Hospital and Medical School, Dundee DD1 9SY


Hospital admission—a missed opportunity to immunise

SIR—We agree with the conclusion of Forsyth’s study that there is poor documentation of a child’s immunisation status on admission to hospital.1 In 66% of the children admitted to our hospital under 5 years we have incomplete immunisation, including the ‘medical record of immunisation’ was absent or in so shortened a form as to be meaningless.

Further information from the district computer we determined the immunisation status of children from Salford who were admitted to a general paediatric ward in a teaching hospital during November 1989. We also obtained details about the children verified to have incomplete immunisation, including the recorded immunisation history, from the hospital notes.

There were 139 admissions of 133 Salford children during the month. The children’s ages ranged from 7 days to 15 years with 113 under 5 years of age. Using the immunisation schedules recommended at that time, information from the district computer showed that 70 children were fully immunised and 47 incompletely immunised; 16 were not traced by the computer.

Information from the hospital notes suggested that in five children there was a contraindication to immunisation and three children had received the necessary immunisation within the two weeks before admission. The remaining 122 hospital notes for six children were not available. The remaining 33 children could have been offered: triple antigen (n=14), oral polio (n=14), combined diptheria-tetanus (n=1), meningococcal B (n=3) and pertussis immunisations (n=12).

Using Ferson’s classification of the ‘medical record of immunisation’ in the hospital notes,1 in 27 of the 41 notes (66%) documentation was absent or in so reduced as to be meaningless. In 11% this was correct and in only 2 (9%) the recording was wrong.

At our children’s hospital, sited in a district with poor immunisation uptake, the opportunities for immunisation in a single month on one ward are considerable. To immunise in hospital we need accurate information on previous immunisations. Parental recall and medical recording of immunisation provide inadequate data. Two possible solutions are improving access to immunisation information held on hospital computers and using parent held child health records.

I A MCKINLAY
W J RAFTERY
Agnes University, Royal Manchester Children’s Hospital, Pendlebury, Manchester M17 1HA


Effects of overweight on lung function

SIR—We were very interested in the paper by Dr Fung and colleagues on overweight and lung function,1 but we have some queries about their approach and findings.

To investigate the association between body mass index and lung function in children, the authors included subjects up to 20 years of age. In table 1 they show that distribution of height for the sexes was unequal; 45% of all girls were taller than 150 cm but only 12% were taller than 159 cm. This suggests that most of these females had reached their adult height


Hospital admission--a missed opportunity to immunise.

I A McKinlay and W J Rankin

Arch Dis Child 1991 66: 273
doi: 10.1136/adc.66.2.273-b

Updated information and services can be found at:
http://adc.bmj.com/content/66/2/273.2.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/