LETTERS TO THE EDITOR

Circulatory effects of fast ventilator rates in preterm infants

Sir,—Fenton et al have recently described the circulatory effects of fast ventilator rates in critically ill neonates.1 These authors found a decrease in arterial oxygen tension (PaO₂) with an increase in ventilator rate and have concluded that this fall in PaO₂ was a result of the predicted theoretical fall in mean arterial pressure with increasing rate.

Mean arterial pressure can be calculated from the following formula:

\[
\text{IT} - \text{ET} = \frac{\text{IT} \times \text{PIP} + \text{ET} \times \text{PEEP}}{\text{IT} + \text{ET}}
\]

(where IT=inspiratory time, ET=expiratory time, PEEP=positive end expiratory pressure, the PEEP=positive end expiratory pressure). It can also be directly measured through a transducer and should essentially reflect the area under the ventilator pressure curve. As can be seen from the above formula, if the inspiratory-expiratory ratios are kept constant and there is no significant change in peak inspiratory pressure or PEEP, then mean arterial pressure should remain constant as rate is changed. A critical determinant of whether mean arterial pressure will in fact change under these circumstances will be the shape of the ventilator pressure curve, which will be affected by the lung compliance and the gas flow to the ventilator.

We have tested this hypothesis by subjecting an Infant Star (Infrasonics) and a Servo 900B (Siemens) ventilator to the changes that were made by Fenton et al for rates of 30 (IT=ET=1), 60 (IT=ET=0.5), and 100 breaths/minute (bpm) (IT=ET=0.3) with a constant inspiratory (20 cm H₂O) and expiratory pressure (5 cm H₂O).

We measured mean arterial pressures using an independent transducer and both ventilators were connected to a test lung with a compliance of 1 ml/cm H₂O. There was no change in mean arterial pressure for the Infant Star with the ventilator flow varied between 8 and 18 litres/minute. For the Servo, the same method used by Fenton et al, the mean arterial pressure at 30 and 60 was 12 cm H₂O and at 100 bpm was 11 cm H₂O at a flow of 10 litres/minute. If the flow at 100 bpm was increased to 15 litres/minute, then the mean arterial pressure was also 12 cm H₂O. Our results also confirm the observations of Greenough and Greenall.

We believe that the fall in oxygenation associated with the higher ventilatory rates may reflect an inadequate period of time above the opening pressure of the terminal airways in infants with significant respiratory disease, as opposed to any significant change in mean airway pressure.

We believe that the fall in oxygen tensions observed in the current study reflect mechanisms other than those suggested by the authors.

ANNE GREENOUGH
Department of Child Health,
King's College Hospital,
London SE5 9RS

A D MILNER
Department of Paediatrics,
St Thomas's Hospital,
London SE1/7EH

Antiviral and antibacterial lipids in human milk and infant formula

Sir,—We read with great interest the recent article by Isaacs et al in which they conclude that the antiviral and antibacterial activities of lipid extracts from gastric aspirates in infants probably result from intragastric lipolysis by lingual lipase to monoglycerides and fatty acids from the triglycerides of the original feeds.1 Lingual lipase hydrolyses medium and short chain triglycerides at a higher rate than longer chain fats.2 In the study by Isaacs et al, at least 50% of the fat content of both formulas was medium chain triglyceride if the additional coconut oil was included.3 Analysis of milk fat by lingual lipase produces a large amount of monolauryl glycerol, which has been shown to have appreciable antibacterial activity.4,5,6,7

We have recently shown a similar effect in mice, where by modifying the mother's dietary fat intake we were able to change the fatty acid composition of their milk. The offspring were inoculated orally with E. coli expressing rotavirus. In those young mice fed on milk naturally enriched with lauric acid (C12) and other medium chain fatty acids, the onset of diarrhoea was delayed and the stool content of rotavirus was appreciably reduced by comparison with mice fed on milk of different fatty acid composition (unpublished observations).

At least in mice, therefore, and contrary to the assertion of Isaacs et al, the protective effects of milk fatty acids appear to operate against non-enveloped viruses as well as against enveloped viruses.8,9 Of course, rule out the possibility that other mechanisms such as secondary variation in trepsin secretion could be responsible for our observations,10 but we think that this is inherently unlikely.

It is becoming increasingly clear that milk fat, whether human or of animal origin, has important protective value against intestinal infections. Human milk should not be used as a food source for young children unless there is a strong medical reason for the withholding of fat, and this policy should be followed particularly in countries with a high incidence and severity of gastroenteritis.

J A DODGE
F A SAGHER
The Queen's University of Belfast,
Institute of Clinical Science,
Grennan Road,
Belfast BT12 6BT

3 Jessen RG, Clark RM, Delfong FA, et al. The lipolytic triad: human lingual, breast milk and pancreatic lipases: physiological implications of...
Dr Isaacs comments:
I certainly agree with Professor Dodge and Dr Sagar that milk lipids may provide important protective effects. Further, I find their observation that alterations in the medium chain fatty acid composition of mouse milk may reduce the severity of infection from rotavirus, a non-enveloped virus, extremely interesting. We, of course, did not determine the effect of the stomach contents of infants fed the various formulas on non-enveloped viruses. Rather, our statement that milk fatty acids and monoglycerides have antiviral activity against enveloped viruses but not non-enveloped viruses was based upon the results of a number of studies by us and others showing that only enveloped viruses are inactivated by purified milk lipids.

In the early studies of Welsh et al. (1) enveloped Semliki Forest virus and herpes simplex virus type 1 (HSV-1) were inactivated by milk lipids but enterovirus coxsackie B4, a non-enveloped virus, was not. In addition, we found that human milk inactivated the enveloped measles virus, vesicular stomatitis virus and HSV-1 but not the non-enveloped vaccinia virus and poliovirus. Milk lipids also have been shown to inactivate dengue virus (2) and mouse mammary tumour virus; these are both enveloped viruses.

In vitro studies it has been found that purified free fatty acids and their derivatives inactivated the enveloped Sendai virus, Newcastle disease virus, influenza A virus, Sindbis virus, West Nile virus, HSV-1, and a number of enveloped bacteriophages but not the non-enveloped SV40, polio or encephalomyocarditis viruses (ECMV). (3) This antiviral effect appeared to be due to the destruction of viral RNA. (4)

These multiple findings suggest that the apparent protective effect of milk lipids against rotavirus infection observed by Dodge and Sagar is probably due to distinct inactivation of the non-enveloped rotavirus. However, milk fatty acids may prevent the binding of rotavirus and other non-enveloped viruses to receptors or interfere with viral uncoating. These suggestions are supported by the observations of JFE Newman (Institute for Virology, Sandringham, South Africa), reported at the recent VIIIth International Congress of Virology (Berlin, 1990), that fatty acids with chain lengths of 12-15 prevent uncoating of some non-enveloped viruses, for example, bovine enterovirus and ECMV, but not others, for example, poliovirus type 1, coxsackie B4 and human rhinovirus 18 and 14. It would, therefore, be interesting to see the results of an in vitro study examining the effects of medium chain fatty acids found in mouse milk on rotavirus infectivity.

References

Fluorescein dilaurate test of exocrine pancreatic function in cystic fibrosis

SIR,—I read with interest the paper by Drs Dalzell and Heaf, (1) particularly as we had a very similar study published in the Arch Dis Child (for four years there was no reference to this work!). In both studies the indexes used were a mixture in age and number, but we prescribed double the dose of fluorescein dilaurate than did Dalzell and Heaf. Our study also demonstrated significantly different fluorescein dilaurate excretion ratios between patients with cystic fibrosis and normal subjects, with the ratios being significantly reduced in patients with cystic fibrosis (p<0.01). An additional component to our study was to compare the fluorescein dilaurate test with faecal chymotrypsin estimation. We found a positive correlation between the two tests (R=0.69, p<0.02).

Although the fluorescein dilaurate test appears to detect exocrine pancreatic insufficiency, in practice it is of limited value as it is in capsule form and not suitable for the age group in which the presentation of cystic fibrosis is most prevalent. We did explore the possibility of the test being used to titrate pancreatic supplement administration. If cholesteroester hydrolase is responsible for liberating the fluorescein from fluorescein dilaurate, it was incorporated into a pancreatic enzyme supplement, it may be possible to use the fluorescein dilaurate test to determine the most effective dosage of pancreatic enzyme for individual patients. Unfortunately this enzyme does not appear to be present in any of the commercially available preparations.

J S FORSYTH

Dundee General Hospitals Unit, Ninewells Hospital and Medical School, Ninewells, Dundee DD1 5SY

Hospital admission—a missed opportunity to immunise

SIR, —We agree with the conclusion of Ferson's study that there is poor documentation of a child's immunisation status on admission to hospital. (1) In 66% of the children admitted to our hospital we found incomplete immunisation the 'medical record of immunisation' was absent or in so shortened a form as to be meaningless.

Using information from the district computer we determined the immunisation status of children from Salford district who were admitted to a general paediatric ward in a teaching hospital during November 1989. We also obtained details about the children verified to have incomplete immunisation, including the recorded immunisation history, from the hospital notes.

There were 139 admissions of 133 Salford children during the month. The children's ages ranged from 7 days to 15 years with 113 under 5 years of age. Using the immunisation schedules recommended at that time, information from the district computer showed that 70 children were fully immunised and 47 incompletely immunised; 16 were not traced by the computer.

Information from the hospital notes suggested that in five children there was a contraindication to immunisation and three children had received the necessary immunisation within the two weeks before admission. The hospital notes for six children were not available.

The remaining 33 children could have been offered: triple antigen (n=14), oral polio (n=14), combined diphtheria-tetanus (n=1), meningocccal B (n=5), and pertussis immunisation (n=2). Using Ferson's classification of the 'medical record of immunisation' in the hospital notes, (2) in 27 of the 41 notes (66%) documentation was incomplete or uncertain. In 25 (61%) it was clear but incorrect, and documentation was correct and clear in only 12 (29%) of notes.

At our children's hospital, sited in a district with poor immunisation uptake, the opportunities for immunisation in a single month on one ward are considerable. To immunise in hospital we need accurate information on previous immunisations. Parental recall and medical records of immunisation provide inadequate data. Two possible solutions are improving access to immunisation information held on district computers and using parent held childhood health records.

I A MCKINLAY

PA RNK IN

Agme Unit, Royal Manchester Children's Hospital, Pendlebury, Manchester M27 7HA

Effects of overweight on lung function

SIR.—We were very interested in the paper by Dr Pung and colleagues on overweight and lung function, (3) but we have some queries about their approach and analysis.

To investigate the association between body mass index and lung function in children, the authors included subjects up to 20 years of age. In table 1 they show that distribution of height for the sexes was unequal: 45% of all girls were taller than 150 cm but only 12% were taller than 159 cm. This suggests that most of these females had reached their adult height at age 13, while 75% of Hong Kong girls reach menarche, the median height is 151 cm. (4) On the other hand, 31% of all boys were taller than 159 cm with no skewed distribution. It is possible that most boys had not reached adult height yet.
Antiviral and antibacterial lipids in human milk and infant formula.

J A Dodge and F A Sagher

Arch Dis Child 1991 66: 272-273
doi: 10.1136/adc.66.2.272-b

Updated information and services can be found at:
http://adc.bmj.com/content/66/2/272.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/