Depot testosterone in boys with anorchia or gonadotrophin deficiency: effect on growth rate and adult height

B Moorthy, Maria Papadopolou, D G Shaw, D B Grant

Abstract

Eleven teenage boys with bilateral anorchia and 12 with gonadotrophin deficiency were treated by injections of testosterone ester (enanthate) at an initial dose of 100 mg every six to eight weeks, rising to 250 mg every four weeks after three to four years. In the anorchic boys average adult height was 177-1 cm, compared with a mean mid-parental height of 174-4 cm, and mean predicted adult heights of 177-0 cm (Tanner-Whitehouse method) and 178-0 cm (Bayley-Pinneau method). In the patients with gonadotrophin deficiency, mean adult height was 176-9 cm, compared with a mean mid-parental height of 176-1 cm, and mean predicted adults heights of 174-0 cm (Tanner-Whitehouse method) and 177-3 cm (Bayley-Pinneau method). We conclude that this testosterone regimen allows achievement of full growth potential in such patients.

During the last 20 years treatment with depot testosterone by intramuscular injection has become well established in the management of boys with different disorders of puberty. Initially introduced for the management of anorchia, testosterone has been widely used in the management of constitutional delay of puberty, and gonadotrophin deficiency either as an isolated defect or as part of a wider range of anterior pituitary failure. Though early reports suggested that testosterone treatment might be associated with some reduction in adult height because of rapid advancement in bone age, it is now believed that treatment with low doses of testosterone has no ill effect on ultimate height. Most of the studies supporting this view, however, have been in patients receiving relatively short term courses of testosterone.

The present retrospective study on the effects of testosterone on boys with anorchia or gonadotrophin deficiency was carried out to confirm that the testosterone regimen that had been used had no significant ill effects on adult height. The study also provided an opportunity to compare two different methods of assessing bone age and predicting adult height.

Patients and methods

PATIENTS

The case notes and radiographs of the hands of 11 boys with anorchia (but otherwise normal genitalia), and 12 with gonadotrophin deficiency, 10 of whom also had hyposmia (Kallman’s syndrome), were reviewed. They had all received long term treatment with depot testos-
was increased to 100 mg every four weeks, and after another one to two years it was increased further to 250 mg testosterone ester every four weeks. For the purpose of this study the dose of testosterone has been expressed in mg/m² surface area. Mean doses for the first, second, and third years of treatment are shown in table 2.

METHODS

Radiographs of the left hand and wrist were available for all the patients before treatment, and they were all scored by BM and MP working together using the Tanner et al RUS (radius, ulna, and short bones) method.8 To assess the reproducibility of the method, the films were then reassessed by BM and MP without knowledge of the patient or the diagnosis, and the results compared. The radiographs were also assessed without knowledge of the diagnosis by DGS using the Greulich and Pyle atlas and the results compared with the initial Greulich and Pyle rating that had been carried out when the patient was first seen.9

Predictions of adult height were calculated from the RUS method allocated before treatment by the method of Tanner-Whitehouse,10 together with the scores derived from the initial Greulich and Pyle rating8 and those derived from the Bayley and Pinneau tables.11

Results

The mean growth velocities of all the patients before treatment are shown in table 2, which also gives the mean growth velocities during the first three years of treatment, mean weight velocities, and body mass index.

In the anorchic boys, mean growth velocity during the first year of treatment increased from 5·4 cm/year to 8·2 cm/year and then fell to 6·9 cm/year and 6·4 cm/year during the second and third years of treatment, respectively. Weight gain increased from 3·0 kg/year to 7·2 kg/year during the first year of treatment, and then fell to 6·0 kg/year and 5·9 kg/year over the next two years, respectively. Body mass index (weight/height²) rose from 18·1 to 20·3 after three years of treatment.

In the boys with gonadotrophin deficiency, mean growth velocity increased from 4·8 cm/year to 7·1 cm/year during the first year of treatment, and then fell to 5·9 cm/year and 5·8 cm/year over the next two years, respectively.

Results

Table 2 Mean growth velocity and weight velocity in 11 boys with anorchia and 12 with gonadotrophin deficiency before starting testosterone and during the first three years of treatment. The mean dose of testosterone for each period is also shown

<table>
<thead>
<tr>
<th></th>
<th>Before treatment</th>
<th>First year's treatment</th>
<th>Second year's treatment</th>
<th>Third year's treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorchia (n=11):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean growth velocity (cm/year)</td>
<td>5-4</td>
<td>8-2</td>
<td>6-9</td>
<td>6-4</td>
</tr>
<tr>
<td>Mean weight gain (kg/year)</td>
<td>3-0</td>
<td>7-2</td>
<td>6-6</td>
<td>5-9</td>
</tr>
<tr>
<td>Mean body mass index (kg/m²)</td>
<td>19-1</td>
<td>19-7</td>
<td>20-4</td>
<td>21-0</td>
</tr>
<tr>
<td>Mean dose of testosterone (mg/m²/month)</td>
<td>Not applicable</td>
<td>51-1</td>
<td>66-7</td>
<td>76-1</td>
</tr>
<tr>
<td>Gonadotrophin deficiency (n=12):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean growth velocity (cm/year)</td>
<td>4-8</td>
<td>7-1</td>
<td>5-9</td>
<td>5-8</td>
</tr>
<tr>
<td>Mean weight gain (kg/year)</td>
<td>5-0</td>
<td>6-3</td>
<td>5-5</td>
<td>5-6</td>
</tr>
<tr>
<td>Mean body mass index (kg/m²)</td>
<td>20-0</td>
<td>21-2</td>
<td>22-6</td>
<td>23-0</td>
</tr>
<tr>
<td>Mean dose of testosterone (mg/m²/month)</td>
<td>Not applicable</td>
<td>50-5</td>
<td>73-3</td>
<td>85-5</td>
</tr>
</tbody>
</table>

Table 3 Mean adult height (cm), mid-parental height, and predicted height at start of treatment calculated by Tanner-Whitehouse and Bayley-Pinneau methods in 11 patients with anorchia and 12 patients with gonadotrophin deficiency

<table>
<thead>
<tr>
<th></th>
<th>Anorchia (n=11)</th>
<th>Gonadotrophin deficiency (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult height</td>
<td>177-1</td>
<td>176-9</td>
</tr>
<tr>
<td>Mid-parental height</td>
<td>174-4</td>
<td>176-1</td>
</tr>
<tr>
<td>Predicted height:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner-Whitehouse</td>
<td>177-0</td>
<td>174-0</td>
</tr>
<tr>
<td>Bayley-Pinneau</td>
<td>178-1</td>
<td>177-3</td>
</tr>
</tbody>
</table>

Weight gain increased from 5·0 kg/year to 6·8 kg/year, and then fell to 5·5 kg/year and 5·6 kg/year over the next two years, respectively. Body mass index increased from 20·6 to 23·0 during the first three years of treatment.

The adult stature achieved by the two groups of patients are compared with mid-parental height and predicted adult height using the Tanner-Whitehouse and Bayley-Pinneau methods (table 3). Mean adult height (177-1 cm) for the patients with anorchia was slightly less than mean predicted height using the Bayley-Pinneau method (178-1 cm) and almost exactly the same as the mean height obtained by the method of Tanner-Whitehouse (177-0 cm). Mean adult height in these patients was 2·6 cm above mean mid-parental height.

In the patients with gonadotrophin deficiency the mean adult height was 176-9 cm, compared with a mean mid-parental height of 176-1 cm. The mean predicted height using the Bailey and Pinneau method was 177-3 cm and using the method of Tanner-Whitehouse was 174-0 cm, 2·9 cm less than the height attained.

Discussion

Testosterone treatment is well established in the management of delayed or absent male puberty. In an early paper, Aynsley-Green et al described the beneficial effect of treatment in a group of boys with anorchia.1 Since then there have been many accounts of its use in boys with constitutional delay of puberty2-5 and in chronic medical disorders which are associated with delayed puberty, such as cystic fibrosis.12 In addition, short term treatment with testosterone has been recommended for differentiating between constitutional delay in puberty or gonadotrophin deficiency and growth hormone insufficiency.13

Treatment with testosterone is also the main method of inducing secondary sexual development in boys with hypopituitarism that is caus-
Depot testosterone in boys with anorchia or gonadotrophin deficiency: effect on growth rate and adult height

Our results also provide some information on the use of the Tanner-Whitehouse and Bayley-Pinneau methods of predicting adult height in hypogonadal boys. Zachman et al found the method of Tanner-Whitehouse superior to the Bayley-Pinneau method in normal children and in children with familial tall stature, whereas it overestimated adult height in various types of short stature. Similar observations were made by Lenko in normal Finnish children and children with growth delay. In our patients with anorchia the two methods gave similar height predictions, but the method of Tanner-Whitehouse underpredicted mean adult height in the boys with gonadotrophin deficiency.

In summary, our findings provide further evidence of the safety of testosterone replacement treatment in male hypogonadism but we suggest that an initial dose of 100 mg every six to eight weeks may result in rather rapid growth. A lower dose of testosterone might be more appropriate in cases in which treatment is started at the age of 11 to 12 years.

Depot testosterone in boys with anorchia or gonadotrophin deficiency: effect on growth rate and adult height.

B Moorthy, M Papadopolou, D G Shaw and D B Grant

Arch Dis Child 1991 66: 197-199
doi: 10.1136/adc.66.2.197

Updated information and services can be found at:
http://adc.bmj.com/content/66/2/197

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/