Intraluminal biliary obstruction

N D Heaton, M Davenport, E R Howard

Abstract

Jaundice caused by intraluminal bile duct obstruction in infancy is rare but may occur in association with biliary sludge, inspissated bile plugs, or gall stones. Nine boys (age 2 weeks–6 months) with obstruction caused by inspissated bile (n=7) or gall stones (n=2) are presented. Haemolysis was not a factor in the patients’ histories but an abnormal entry of the common bile duct into the third part of the duodenum was demonstrated in two and one had an asymptomatic haemangioma. Ultrasoundography was the most useful investigation. Surgical removal of the bile duct obstruction was necessary in eight cases and included biliary tract drainage in six and cholecystectomy for changes of cholecystitis in four. Obstruction resolved spontaneously in one infant after percutaneous cholangiography. There were no postoperative complications.

Inspissated bile plug syndrome (IBPS) as a cause of neonatal obstructive jaundice is a well recognised complication of neonatal haemolysis caused by maternal rhesus and ABO blood group incompatibility.1 The development of early exchange transfusion reduced the incidence.1 An increase in the number of reported cases in recent years has been attributed to parenteral nutrition, diuretic treatment,2 bowel dysfunction,3 and disseminated intravascular coagulation.4 The presence of an obstruction of the common bile duct in neonates and young infants caused by inspissated bile or gall stones in the absence of any of the above factors is unusual.5 Seven infants with obstruction caused by inspissated bile and two by gall stones are presented and the possible predisposing factors discussed.

Patients

Seven boys presented at a mean age of 6 weeks (range 2 weeks–3 months) with jaundice, pale stool, and dark urine (see table 1 for patients’ details). Another two boys presented at 4 and 6 months of age with obstructive jaundice secondary to stones in the common bile duct. Three of the nine had had significant obstetric complications: these included fetal distress, forceps delivery, and maternal eclampsia treated by caesarean section at 37 weeks’ gestation. The mean birth weight was 3210 g (range 2400–3800 g) and the mean gestational age was 40 weeks (range 37–42 weeks). Four children developed neonatal problems including physiological jaundice that settled spontaneously, anaemia treated by blood transfusion, hypoglycaemia where there was a family history of consanguinity, and hepatic haemangiomas diagnosed on ultrasound. The hepatic haemangiomas were asymptomatic and no specific treatment was given.

All nine patients presented with a conjugated hyperbilirubinaemia. There was a wide variation in bilirubin concentration (mean 133 μmol/l, range 56–324 μmol/l), alkaline phosphatase activity (mean 917 IU/l, range 546–1963 IU/l), and aspartate aminotransferase activity (874 IU/l, range 157–179 IU/l). The haemoglobin concentration ranged from 91–122 g/l. The reticulocyte count as a percentage ranged from 1.8–4.2% and no significant haemolysis was identified.

DISIDA (technetium labelled disopropyliminodiacetic acid) scans were performed in five patients, of whom four showed no excretion, suggesting a diagnosis of biliary atresia. One showed minimal excretion at six hours. Liver biopsy specimens taken from four patients (table 2) showed features of cholangitis and duct obstruction in two cases, cholestasis with mild portal fibrosis in one case, and bile duct proliferation in one.

Ultrasound scan results are shown in table 2. The extrhepatic biliary tree was dilated in eight cases. One child was incorrectly thought to have a choledochal cyst as the diameter of the

Table 1 Clinical details of patients with IBPS and gall stones

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age</th>
<th>Symptoms</th>
<th>Neumal history</th>
<th>Family history</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>IBPS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12 weeks</td>
<td>Jaundice</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>6 weeks</td>
<td>Jaundice</td>
<td>Forceps delivery, special care baby unit</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>4 weeks</td>
<td>Jaundice</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>2 weeks</td>
<td>Jaundice</td>
<td>Blood transfusion</td>
<td>Diabetes</td>
</tr>
<tr>
<td>5</td>
<td>10 weeks</td>
<td>Jaundice</td>
<td>Caesarean section, eclampsia, hypoglycaemia</td>
<td>Consanguinous</td>
</tr>
<tr>
<td>6</td>
<td>2 weeks</td>
<td>Jaundice</td>
<td>Capillary haemangiomas</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>8 weeks</td>
<td>Jaundice</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gall stones</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6 months</td>
<td>Jaundice</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>4 months</td>
<td>Jaundice</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Department of Surgery
King’s College Hospital, Denmark Hill, London SE5 8RX
N D Heaton
M Davenport
E R Howard

Correspondence to:
Mr Heaton.

Accepted 15 August 1991
common bile duct was 8 mm. Stones were correctly identified in the common bile duct and gall bladder in two patients. Percutaneous transhepatic cholangiograms were performed in four patients and one child settled spontaneously after this procedure. Evidence of distal obstruction of the common bile duct was present in the other three (see figure).

Eight of the nine patients were subsequently explored and the diagnosis of IBPS (n=6) and gall stones (n=2) confirmed. Operative cholangiograms via the gall bladder showed abnormal entry of the common bile duct into the third part of the duodenum in two patients with IBPS. Details of operative findings, treatment, and follow up are given in table 3. Four patients with thick walled or oedematous gall bladders underwent cholecystectomy (both patients with stones and two with IBPS). The common bile duct was explored in seven patients, four had sphincteroplasties, one had a choledochoduodenostomy, and one had dilatation of the ampulla. Interestingly a normal gall bladder was found in one child with stones in the common bile duct. T-tube or cholecystostomy drainage was used in six patients. Postoperative cholangiography was used to exclude residual obstruction before removal of the drainage catheter or T-tube 10–21 days after surgery.

### Table 2 Findings on investigations performed

<table>
<thead>
<tr>
<th>Patient No</th>
<th>DISIDA scan</th>
<th>Liver biopsy</th>
<th>Ultrasound scan</th>
<th>Percutaneous transhepatic cholangiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No excretion</td>
<td>Cholangitis</td>
<td>Dilated common bile duct, dense bile</td>
<td>Free drainage, cystic duct into confluence of right and left hepatic duct</td>
</tr>
<tr>
<td>2</td>
<td>No excretion</td>
<td>—</td>
<td>Bile plug, Mirrizi’s syndrome</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>Dilated common bile duct and gall bladder, inspissated bile</td>
<td>Obstructed lower common bile duct</td>
</tr>
<tr>
<td>4</td>
<td>No excretion</td>
<td>—</td>
<td>Dilated common bile duct (8 mm), ? choledochal cyst</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>? Excretion</td>
<td>—</td>
<td>Normal</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>No excretion</td>
<td>—</td>
<td>Dilated common bile duct and gall bladder, haemangiomas</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Cholangitis, features of duct obstruction</td>
<td>—</td>
<td>Dilated biliary tree</td>
<td>Obstructed lower common bile duct</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Biliary cholestasis, mild portal fibrosis</td>
<td>Gall bladder stones, dilated common bile duct</td>
<td>Stones in cystic duct and common bile duct</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>—</td>
<td>Common bile duct stones</td>
<td>—</td>
</tr>
</tbody>
</table>

### Table 3 Details of treatment and outcome

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Operation performed</th>
<th>Findings at operation</th>
<th>Results of operative cholangiogram</th>
<th>Procedure</th>
<th>Follow up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>(spontaneous resolution)</td>
<td>Dilated common bile duct, chronically inflamed gall bladder</td>
<td>Cholecystectomy, ECBD, T-tube</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Dilated common bile duct, chronically inflamed gall bladder</td>
<td>Filling defect in cystic duct</td>
<td>Cholecystectomy, ECBD, T-tube, sphincteroplasty</td>
<td>6, well</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Tense common bile duct and gall bladder, bile plug removed</td>
<td>Bile plug, ? papillary stenosis</td>
<td>Cholecystectomy, ECBD, T-tube, sphincteroplasty</td>
<td>1, well</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Dilated common bile duct and gall bladder, bile plug and debris</td>
<td>Dilated common bile duct, common bile duct into third part duodenum</td>
<td>ECBD, T-tube, dilatation of ampulla</td>
<td>1, well</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>Inspissated bile plug</td>
<td>Normal</td>
<td>Cholecystostomy, saline flush</td>
<td>1, well</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Haemangiomas, two hepatic arteries, inspissated bile</td>
<td>Normal</td>
<td>Cholecystostomy, saline flush</td>
<td>1, well</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Dilated biliary tree, inspissated bile</td>
<td>Normal</td>
<td>Cholecystostomy, saline flush</td>
<td>1, well</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>Stones in gall bladder and common bile duct</td>
<td>Common bile duct into third part duodenum</td>
<td>Cholecystectomy, sphincteroplasty</td>
<td>24, well</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>Stones in common bile duct</td>
<td>Stones in common bile duct</td>
<td>Cholecystectomy, ECBD, T-tube, sphincteroplasty</td>
<td>15, well</td>
</tr>
</tbody>
</table>

ECBD, exploration of the common bile duct.

Percutaneous transhepatic cholangiogram showing dilated extrhepatic bile ducts secondary to inspissated bile plug in the distal common bile duct.

Jaundice resolved in all nine patients and there were no postoperative complications. Patient follow up ranged from one month to two years with a mean of six months.

**Discussion**

Intraluminal biliary obstruction is a rare cause
of jaundice in early life, and the incidence may be estimated indirectly by a comparison with the incidence seen in the same hospital with biliary atresia (incidence 1:15,000 live births).

Ladd described five patients with obstructive jaundice caused by a mechanical obstruction of the common bile duct by plugs of thickened bile. He believed that the condition was secondary to distal common bile duct stenosis. Hsia et al investigated 156 infants with obstructive jaundice of whom 60% had biliary atresia. Fifteen per cent had inspissated bile plug syndrome secondary to erythroblastosis fetalis and 19% had IBPS of unknown aetiology. It was thought that the syndrome was caused by a combination of factors that included small bile ducts, hepatic immaturity, dehydration, and thickened bile secretions. However, this group included patients with polycystic kidney disease and congenital hepatic fibrosis and this may have been a factor. Five patients of these patients with IBPS went on to develop cirrhosis.

Haemolysis because of rhesus or ABO incompatibility was a significant factor in many of the early case reports, and the development of early exchange transfusion as an effective form of treatment led to a sharp reduction in numbers. More recently the use of prolonged parenteral nutrition has been associated with IBPS, cholestasis, biliary sludge, and gall stones. It has been proposed that a tenacious, viscous bile occurs either as a result of parenteral nutrition or secondary to enteral failure. Blood transfusion, dehydration, and diuretic treatment may cause an increase in the bilirubin/bile concentration leading to oversaturation. Many of these infants have other problems such as prematurity, respiratory distress syndrome, necrotising enterocolitis, or intra-abdominal sepsis and intravascular coagulopathy. Cystic fibrosis has also been implicated in the development of IBPS and cholelithiasis, particularly in small and premature infants. Lilly and Sokol considered that neonatal obstruction of the common bile duct in the absence of any of these factors was unusual. In our seven patients with intraluminal biliary obstruction possible contributory factors included forceps labour (n=1), neonatal jaundice (n=1), blood transfusion (n=1), consanguinity, hypoglycaemia, and caesarean section (n=1), and hepatic haemangiomata (n=1). Bruising after forceps or caesarean delivery can produce hyperbilirubinaemia after breakdown of blood and immature hepatocyte function may be responsible for an impaired conjugation of bile acids. Undetected haemolysis associated with the hepatic haemangiomata may have caused bilirubin saturation of bile in one of our cases. All nine infants were boys, but no sex difference has been reported in the predisposition to intraluminal biliary obstruction.

Abnormalities of the extrahepatic biliary tree and cholecystitis have been associated with gall stone formation in children. Congenital anomalies of the lower common bile duct, particularly anomalous pancreaticobiliary junctions have recently been described in cases of IBPS. An abnormal entry of the lower common bile duct into the third part of the duodenum was demonstrated in two of our patients. Abnormal entry of the lower common bile duct may be associated with abnormal sphincter formation and function, and at operation the common bile duct was dilated secondary to a distal functional obstruction. No predisposing factors were found in two children. It may be difficult to exclude biliary atresia in this group of patients. Clinical examination (and testing of stool) may not differentiate between the two groups. Ultrasonic examination confirms the 'obstructive' picture, but the concentration of conjugated bilirubin and alkaline phosphatase and γ-glutamyltransferase activities can be higher than expected for infants with biliary atresia. Radionuclide scans pointed to the diagnosis of biliary atresia, but it has been suggested that a repeat examination will show excretion in IBPS.

Ultrasound scan was helpful in identifying a dilated extrahepatic biliary tree, bile duct sludge/plugs and stones, although one patient with a common bile duct of 8 mm diameter was mistakenly diagnosed as having a choledochal cyst. Endoscopic retrograde cholangiopancreatography, although not performed in these patients, is now being assessed as a diagnostic test for biliary atresia. In future it may identify patients with intraluminal biliary obstruction and anomalous junctions of the pancreaticobiliary ducts.

Liver biopsy specimens from infants in this series showed evidence of obstruction. The features (which included canalicular bile plugs, bile duct proliferation, and giant cell transformation) are non-specific, however, and represent a common type of response to bile duct obstruction in this age group. Other causes of conjugated hyperbilirubinaemia in the neonate include infection, metabolic disorders, or inflammatory disease of the liver.

A small number of patients with equivocal tests for biliary atresia come to laparotomy. At operation it is usually simple to differentiate between atresia and intraluminal biliary obstruction. Cholangiography is performed via the gall bladder to demonstrate the biliary tree. Brown has described successful irrigation of the common bile duct at surgery using a mucolytic agent, N-acetylcysteine, which has been used to reduce the viscosity of pulmonary mucus.

Endoscopic or percutaneous transhepatic cannulation and flushing of the common bile duct may therefore offer a satisfactory non-operative treatment for this condition. Cholecystectomy is recommended in children with thickened or inflamed gall bladders and gall stones within the gall bladder.

Gall stones are a rare cause of jaundice in infancy, but like IBPS the incidence appears to be increasing. The use of ultrasound to investigate children may account for some of this increase. In a prospective ultrasound study of neonates receiving total parenteral nutrition, 44% were found to have biliary sludge and 5% developed stone function tests. Haemolytic anaemias are the commonest cause of gall stones in children,
and most are 10 to 13 years old at presentation.\textsuperscript{30} Other causes include ileal resection, Crohn's disease,\textsuperscript{20} biliary tract anomalies,\textsuperscript{2} and prolonged total parenteral nutrition and frusemide treatment.\textsuperscript{2} The two patients reported in this paper were older (4 and 6 months) than our group with IBPS, but they were young in comparison to other reports of children with gall stones. Spontaneous resolution of both IBPS and gall stones has been reported.\textsuperscript{21}\textsuperscript{32}

There appears to be a range of clinical problems associated with increased breakdown of bilirubin, failure of secretion, and oversaturation of bile, which presents with obstructive jaundice in the young child. Canalicular bile plugs and cholestasis represent the commonest response and appear to be reversible. Insipissated bile plugs in the extrahepatic biliary tree may represent the next stage and occasionally the child will develop stones.


Intraluminal biliary obstruction.

N D Heaton, M Davenport and E R Howard

Arch Dis Child 1991 66: 1395-1398
doi: 10.1136/adc.66.12.1395

Updated information and services can be found at:
http://adc.bmj.com/content/66/12/1395

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/