Non-invasive assessment of intraluminal lipolysis using a 13CO$_2$ breath test

M S Murphy, E J Eastham, R Nelson, A Aynsley-Green

Abstract

Techniques available for the study of lipase activity in the gut are unsatisfactory. Breath tests measuring labelled carbon dioxide (13CO$_2$) may provide a useful means for this assessment. Six subjects with cystic fibrosis and pancreatic insufficiency and 10 controls received a test meal containing $[^{13}$C]trioctanoin, and breath 13CO$_2$ was measured using a dual inlet, dual detector isotope ratio mass spectrometer. Comparison of postprandial breath 13CO$_2$ enrichment allowed complete separation between children with pancreatic insufficiency and controls. Administration of one capsule of pancreatic enzyme with the test meal resulted in an increase in 13CO$_2$ production in all six patients, and four capsules produced a further increase in five of the six. Serial fat balance studies on four of the patients while receiving comparable doses of oral enzyme failed to demonstrate a progressive improvement in fat absorption. The $[^{13}$C]trioctanoin breath test may prove a safe, non-invasive technique not only for the detection of pancreatic insufficiency, but also for the quantitative study of intraluminal lipolysis.

Fat malabsorption is a major contributing factor to the growth failure and nutritional deficiencies that occur in many patients with cystic fibrosis. The diagnosis of pancreatic insufficiency may be made in these individuals by direct measurement of faecal fat excretion. This technique is time consuming, unpleasant to perform, and prone to inaccuracy. The 'fat tolerance test' has failed to gain widespread acceptance and its reliability has been questioned. Pancreatic exocrine function may be studied more directly by duodenal intubation methods, but these are time consuming and invasive. Watkins et al. have reported that it is possible to screen for fat malabsorption by administering a triglyceride labelled with the non-radioactive isotope of carbon, 13C, and by then measuring the increase in enrichment in breath 13CO$_2$. This approach is especially attractive as a test for use in children as it is both safe and non-invasive.

Our aim was to re-examine the use of a 13CO$_2$ breath test as a technique for the detection of pancreatic insufficiency in children with cystic fibrosis, as previously reported by Watkins et al. In addition we performed a preliminary investigation of the test as a technique for the quantitative study of intestinal lipolytic activity.
Non-invasive assessment of intraluminal lipolysis using a 13CO$_2$ breath test

1·4 ml/kg of Calogen. This provided 0·7 g/kg fat, which is comparable with the fat content of a normal meal. After ingestion of the test meal the children continued to fast, and further breath samples were collected at 30 minute intervals for a total of four hours.

In order to permit the collection of breath samples the children exhaled through a 10 cm length of universal tubing (Argyl bubble tubing, Sherwood Medical Industries). End expiratory air was collected by aspirating the sample into a 20 ml syringe via a butterfly needle inserted into the lumen of the tubing close to its proximal end. This technique ensured that the samples contained an adequate quantity of carbon dioxide for analysis. Breath samples were stored in 20 ml Vacutainers (Becton Dickenson Vacutainer Systems) for subsequent analysis.

Before analysis the carbon dioxide content of the breath specimen was isolated and purified using a modification of a previously described technique in which the component gases are separated by cold trapping and all but carbon dioxide are then removed by vacuum pump.4 The purified carbon dioxide was immediately analysed using a dual inlet, dual detector isotope ratio mass spectrometer (Isospec 44, Spectramass).

Breath 13CO$_2$ enrichment is calculated from the increase in the ratio of 13CO$_2$ to 12CO$_2$ as measured by the isotope ratio mass spectrometer.5 This sample ratio is compared with that obtained from a standard carbon dioxide. The results are then expressed as the 'del per mil' ($\delta^{13}O$) difference between the 13CO$_2$/12CO$_2$ ratios of the sample (R_s) and the standard (R_r).

$$\delta^{13}O = \left(\frac{R_s}{R_r} - 1\right) \times 10^3$$

The samples in our studies were analysed using distiller's carbon dioxide as a reference standard. The responses to the test meal were recorded as the rise in 13CO$_2$ enrichment above the fasting level. The overall analytic precision of the mass spectrometric analyses was (SD) 0·5%o. Results from two fasting control subjects, and also from two children with cystic fibrosis who had been given the test meal without $[13]$Citroctanin but with four capsules of pancreatic enzyme added, each had a variation (SD) of less than 0·7%o, with no tendency towards a progressive alteration in baseline 13CO$_2$ enrichment being observed over a four hour postprandial study period. As the area under the 13CO$_2$ curve is directly proportional to the sum of the interval sample enrichment levels this sum (Σ) was used as an index of 13CO$_2$ production after administration of the test meal.

Statistical analyses were performed using the non-parametric Mann-Whitney test. Ethical committee approval was received for these studies, and informed parental consent was obtained before the child's participation.

Results

Among the control subjects an increase in breath 13CO$_2$ was detected in every case within 60 minutes (fig 1). In seven of the 10 a peak of enrichment occurred between 120 and 180 minutes, but in the remaining three the level of 13CO$_2$ was continuing to rise at 240 minutes. None of these subjects had returned to baseline by four hours.

Among the six with cystic fibrosis some increase in breath 13CO$_2$ also occurred, but the responses were much less than those seen in the control group (fig 1). By 90 minutes there was minimal overlap between patients and controls, and it was noteworthy that the lowest responder among the control subjects showed a pronounced rise in 13CO$_2$ enrichment at the 240 minute time point. When the results of the tests were expressed either in terms of peak 13CO$_2$ enrichment attained, or in terms of the increase in 13CO$_2$ production (Σ) (fig 2), complete separation was achieved between patients and controls. The mean value for Σ was 36·8%o in the patients with cystic fibrosis and 176·9%o in the control group ($p<0·02$).

Figure 3 shows an example of the breath 13CO$_2$ responses recorded from one of the subjects with cystic fibrosis during serial breath tests performed without enzyme supplementation, and then with one, and then four capsules of enzyme added to the test meal. In all six cases a significant increase in breath 13CO$_2$ production (Σ) occurred when the test meal was administered with one capsule ($p<0·05$), and in five of the six a further increase was observed with four capsules (fig 4). In one case (No 6, fig 4) the increase after four capsules was considerably less than that seen with no enzyme addition, so...
that the overall incremental effect with four capsules did not reach significance.

The results of fat balance studies performed on four of the subjects with cystic fibrosis while off pancreatic enzyme supplementation, and while receiving low (three to four capsules) and finally high doses (14 to 16 capsules) of pancreatic enzyme are presented in the table. No obvious association was noted between the severity of fat malabsorption as judged by the coefficient of fat absorption and the degree of abnormality of the 13CO$_2$ breath test in those studies performed without the addition of enzyme to the test meal. Although an increase in the coefficient of fat absorption was observed in three of the four subjects with low dose enzyme replacement, in three no further improvement was detected with high dose supplementation, and indeed in one subject the coefficient of absorption worsened progressively with increasing enzyme supplementation.

Discussion

In recent years evidence has grown suggesting that careful attention to nutritional management in cystic fibrosis may be of great importance in influencing the course of the disease. Oral enzyme replacement frequently fails to abolish steatorrhoea in cystic fibrosis, and although normal growth may be achieved, appreciable symptoms and nutritional losses often persist. Attempts have been made to prevent gastric acid denaturation of ingested enzyme by administering antacids, or H$_2$ receptor antagonists, but the benefits have been controversial. The use of enteric coated tablets has not found favour, but newer preparations employing pH sensitive enteric coated microspheres of enzyme appear to be more successful. Consequently a range of preparations are now becoming available, some of which are claimed to have superior dissolution characteristics. The availability of a safe non-invasive technique to assess lipase activity in the intestinal lumen would, therefore, be a major advance in the evaluation of enzyme treatment.

Several studies have reported the use of ‘fat tolerance tests’ in which the rise in plasma lipids after ingestion of a test meal is observed. These tests appear to lack sensitivity, their value even for detection of fat malabsorption being doubtful. Duodenal intubation studies have been performed to measure intestinal lipase activity after oral enzyme ingestion in patients with pancreatic insufficiency. This approach, in addition to being invasive, merely provides information on the lipase concentration at a single point in the gut, and does not reliably estimate the overall functional level of lipolytic activity. Measurement of faecal fat excretion has been considered the gold standard for the detection of fat malabsorption, but its limitations are widely recognised, and consequently some centres have dispensed completely with this technique. Although the fat balance study has, in principle, the merit of providing a direct estimate of fat malabsorption, merely the measurement of fat losses in subjects receiving pancreatic enzyme supplements, fat losses are influenced by factors other than enzyme bioavailability.

Efforts have been made in recent years to introduce breath tests for the study of intestinal absorption based on the use of 13C, a non-radioactive stable isotope of carbon. Watkins et al have reported that by utilising labelled triglycerides with differing absorption pathways it may be possible to distinguish pancreatic insufficiency from steatorrhoea of other aetiology. The technique, therefore, appeared to possess considerable sensitivity, and so we considered that it might be possible to employ it for quantitative studies of fat absorption. Unlike duodenal intubation studies, a 13CO$_2$ breath test has the potential to provide a measure of the overall functional level of lipase activity in the intestinal lumen.

The results of this study provide further support for the ability of a 13CO$_2$ breath test to detect pancreatic insufficiency in children as previously reported by Watkins et al. A recent study has reported a 20% increase in resting energy expenditure, and presumably there-

Figure 3 13CO$_2$ enrichment levels recorded in one of the subjects with cystic fibrosis during studies performed without pancreatic enzyme, and with one and four capsules of enzyme added to the test meals of 13CO$_2$troctanoin.

Figure 4 13CO$_2$ production over four hours as estimated by Σ (algebraic sum of the interval sample 13CO$_2$ differences from the baseline levels) in the six subjects with cystic fibrosis during studies with no enzyme supplementation, and with one and four capsules of enzyme added to the test meals of 13CO$_2$troctanoin.
Non-invasive assessment of intraluminal lipolysis using a 13CO$_2$ breath test

fore in carbon dioxide production, in individuals with cystic fibrosis. An increase in carbon dioxide excretion could be misleading, as its dilutional effect would result in a reduction in breath 13CO$_2$ concentration. The subjects in that investigation ranged from 9 to 35 years, and it was noted that the resting energy expenditure correlated negatively with pulmonary function. The children in our study were significantly younger (4 to 8 years) and did not have severe pulmonary disease. Even allowing for a 20% dilutional effect in our patients, however, there was still complete separation between patients and controls. Simultaneous measurement of both total carbon dioxide production and 13CO$_2$ enrichment would be valuable in order to determine the exact magnitude of any dilutional effect which may exist. 13C bicarbonate kinetics are also subject to variation, and could be influenced by factors such as nutritional state; it will be important to compare the ‘bicarbonate recovery value’ in children with cystic fibrosis and controls.

In addition to supporting the value of this technique for detecting pancreatic insufficiency, however, our study also suggests that the 13C-trioctanoin breath test may prove a useful method for the quantitative study of lipolytic activity in the intestinal lumen. Only one of six cases failed to show a progressive rise in 13CO$_2$ production with increasing doses of enzyme. In this single case an increase in 13CO$_2$ production occurred with the addition of one capsule of enzyme to the test meal, but with four capsules 13CO$_2$ production failed to rise even to the level seen in the untreated state. This may have been because the test meal on that occasion was subject to delayed gastric emptying. It is noteworthy that the time point at which peak 13CO$_2$ enrichment occurred in these studies was quite variable. In several of the control subjects 13CO$_2$ levels were still rising and most still had breath 13CO$_2$ levels that were well above baseline at the end of the four hour study period. It is likely, therefore, that by prolonging the study period greater overall sensitivity would be achieved.

The 13C-trioctanoin breath test provides a measure of the absorption of a medium chain triglyceride, and so the results do not directly relate to the overall complex processes involved in the absorption of dietary long chain triglycerides. Although both medium and long chain triglycerides require initial lipolysis, medium chain triglycerides, being water soluble, do not depend critically on the presence of bile salts for their digestion and absorption. In cystic fibrosis bile salt deficiency is frequently present. The 13C-trioctanoin breath test thus focuses on the desired test parameter and a reduction in trioctanoin absorption reflects the level of lipolytic activity present in the patients digestive tract. The choice of 13C-trioctanoin has an incidental advantage in that it is rapidly absorbed and almost completely metabolised to carbon dioxide, thus shortening the overall study period. This is an important practical consideration. Although direct comparisons between the results of the 13CO$_2$ breath tests and fat balance studies cannot be made, it is of interest that the latter failed to detect a progressive improvement in fat absorption with increasing enzyme supplementation. The failure to improve fat absorption is not particularly surprising—complex interactions of various factors other than enzyme dosage certainly influence the degree of steatorrhoea present in individual patients. A key element in the introduction of 13CO$_2$ breath tests has been the development of the modern dual inlet, dual detector isotope ratio mass spectrometer, which can detect minute changes in 13CO$_2$ enrichment against the naturally occurring high background levels (approximately 1%). With the present growth of interest in the value of stable isotopes in biomedical research, an increasing number of medical centres are now gaining access to this technology.

Further studies with larger numbers of subjects and varied doses of pancreatic enzyme may allow optimal test conditions to be established, and may assist in further defining the sensitivity of this method for the quantitative study of intestinal lipase activity. By providing a measure of enzyme bioavailability it may potentially complement the currently available techniques for the assessment of enzyme replacement treatment.

MS Murphy was supported by an Action Research Training Fellowship. Further support was given by the Cystic Fibrosis Research Trust and by the Mason Foundation.

Non-invasive assessment of intraluminal lipolysis using a 13CO2 breath test.

M S Murphy, E J Eastham, R Nelson and A Aynsley-Green

Arch Dis Child 1990 65: 574-578
doi: 10.1136/adc.65.6.574

Updated information and services can be found at:
http://adc.bmj.com/content/65/6/574

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/