Phaeochromocytoma—investigation and management of 10 cases

J E Deal, P S Sever, T M Barratt, M J Dillon

Abstract
Since 1960 we have diagnosed phaeochromocytoma (paraganglioma) in 10 children. The cases include a 15 year old girl who over a three year period presented with multiple paragangliomata and an associated malignant carotid body tumour. All children were hypertensive, eight of 10 presenting with severe headaches. Diagnosis was based on finding a raised urinary vanilylmandelic acid excretion and plasma noradrenaline concentration. In addition six of eight children were hypercalcaemic with raised plasma calcitonin concentrations; plasma parathyroid hormone concentrations were high in two of seven and four out of eight children had raised plasma renin activities on presentation. No child, however, was found to have a multiple endocrine neoplasia syndrome. Despite the introduction of newer techniques for the detection of catecholamine producing tumours we found that selective arteriography and venous catecholamine sampling were superior for tumour localisation compared with ultrasound scanning, computed tomography, and meta-iodo-benzylguanidine (MBG) scanning.

Phaeochromocytoma is a rare but treatable cause of hypertension in childhood.1 At the Hospital for Sick Children, Great Ormond Street, London, which is a tertiary referral centre for childhood hypertension, 1.3% of cases referred over a 10 year period, for investigation of high blood pressure, were found to have a phaeochromocytoma (table 1). In children there is a higher incidence (32%) of multiple tumours and an increased occurrence of the multiple endocrine neoplasia syndromes when compared with that reported in adults.1 The incidence of malignancy is 2.4%, compared with a malignancy rate of 10% in adults.2

Table 1 Diagnoses of 454 cases of hypertension admitted to the renal unit at the Hospital for Sick Children, 1975–85, including six of the children reported here

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No (% of children)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarct renae scarring</td>
<td>84 (19)</td>
</tr>
<tr>
<td>Reflux nephropathy</td>
<td>72 (16)</td>
</tr>
<tr>
<td>Obstructive uropathy</td>
<td>123 (27)</td>
</tr>
<tr>
<td>Glomerular disease</td>
<td>38 (8)</td>
</tr>
<tr>
<td>Renovascular disease</td>
<td>32 (7)</td>
</tr>
<tr>
<td>Haemolytic anaemia syndrome</td>
<td>22 (5)</td>
</tr>
<tr>
<td>Polyuretic kidney disease</td>
<td>18 (4)</td>
</tr>
<tr>
<td>Idiopathic (essential)</td>
<td>13 (3)</td>
</tr>
<tr>
<td>Wilms' tumour</td>
<td>7 (<2)</td>
</tr>
<tr>
<td>Coarctation</td>
<td>6 (<2)</td>
</tr>
<tr>
<td>Phaeochromocytoma</td>
<td>26 (6)</td>
</tr>
</tbody>
</table>

A system for the classification of tumours of the autonomic nervous system was proposed by Glenner and Grimley in 1974 and is now widely accepted.3 Under this classification a tumour arising from the adrenal medulla is termed a phaeochromocytoma and chromaffin tumours arising outside the adrenals of paraganglionic origin are termed paragangliomata. Paragangliomata are more commonly found at extra-adrenal sites in children than in adults and can occur anywhere in the autonomic nervous system. Tumours of the carotid body, in association with phaeochromocytoma, have been frequently reported in adults,4,5 but there is only one report in the literature of an affected child, that of a 12 year old boy.1 We report here 10 cases of paragangliomata, including one child with multiple lesions and a malignant carotid body tumour, that have been seen at the Hospital for Sick Children since 1960.

Patients

Clinical details of all 10 children are summarised in table 2; the cases are tabulated in chronological order of presentation. They ranged in age from 3.5 months to 16 years, mean age 10.3 years. Only three children were less than 10 years old at presentation.

The commonest presentation in the present series was severe headaches; varying in duration from 11 days to 2.5 years. The youngest child (case 3) presented with episodes of diarrhoea and sweating and two generalised fits, presumed to be due to her hypertension, at the age of 3 months. All children were hypertensive; in eight children it was sustained and in only two was the blood pressure labile. One girl (case 10) was diagnosed fortuitously: although asymptomatic she was found to be hypertensive at an outpatient clinic visit where she was being followed up for a stage IV Wilms' tumour that had been diagnosed and treated seven years previously by chemotheraphy, radiotherapy, and a right nephrectomy.

Another girl (case 7) who presented with headaches, pallor, and tachycardia, was initially found to have two para-aortic paragangliomata. After surgical removal of these she presented over the subsequent three years with two further extra-adrenal tumours, bilateral intra-adrenal tumours, and a malignant carotid body tumour, which were all surgically removed.

Two children had a positive family history: one (case 10) had an uncle who had been diagnosed some years before her presentation and the other (case 9) had a 17 year old sister.
who was diagnosed at the same time as he was being investigated. There were no positive family histories of multiple endocrine neoplasia syndromes.

At presentation all 10 children had raised 24 hour urinary vanillylmandelic acid concentrations. Plasma noradrenaline concentrations were also raised in the eight children measured. Case 7, the child with multiple paragangliomata, had repeatedly normal urinary vanillylmandelic acid concentrations after the removal of her first two tumours but raised plasma noradrenaline concentrations.

Plasma renin activity was raised in four out of eight patients on presentation and six of the eight had raised plasma calcitonin concentrations (normal <0.08 µg/l), but these were normal when repeated postoperatively. Associated with a raised plasma calcitonin concentration, the six patients were noted to be hypercalcæmic at presentation (normal <2.0 mmol/l corrected); postoperatively they were normocalcaemic. Plasma concentrations of parathyroid hormone were high in two of seven children at presentation but fell to normal after removal of their phaeochromocytoma.

Table 3 shows the localisation techniques that were used in our patients. Case 1, who presented in 1960 for investigation, had a phaeochromocytoma clinically diagnosed and underwent intravenous pyelography, which failed to localise the tumour, and then proceeded to an exploratory laparotomy.

Table 3: Radiological techniques used to localise catecholamine secreting tumours in the 10 patients

<table>
<thead>
<tr>
<th>Case No</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous pyelography</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Computed tomography</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>31P-MIBG scan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Selective arteriography</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Serial catecholamine sampling</td>
<td>-</td>
</tr>
</tbody>
</table>

+, Technique helped localise the tumour; -, technique failed to localise the tumour; 2, equivocal result; * MIBG scan localised the tumours present at initial presentation only but was unhelpful when subsequent tumours were investigated.
In 1974 Glenner and Grimley proposed a system for the classification of paraganglia. They recommended that the term phaeochromocytoma be limited to paragangliomas arising in the adrenal medulla. Paraganglia and the paragangliomas arising from them are, in their classification, divided into four 'families' on the basis of anatomical location, histochermical features, and innervation. (1) Branchiomyeric (chemodectomas)—associated with arterial vessels and cranial nerves of the ontogenetic branchial arches. (a) Intercarotid (carotid body); (b) jugulotympanic (glomus jugulare, glomus tympanicum); (c) orbital; (d) laryngeal; (e) subclavian; (f) aorticopulmonary; (g) coronary; and (h) pulmonary. (2) Intravagal. (3) Aortico-sympathetic—associated with the sympathetic chain and the retroperitoneal ganglia. In the abdomen (including the organ of Zuckerkandl), thorax, and neck. (4) Visceral-autonomic—(a) atria of the heart; (b) urinary bladder; (c) liver hilum; and (d) mesenteric vessels.

The older classification based on chromaffin staining is unsatisfactory because staining is frequently unpredictable and chromaffin positivity of a paraganglioma does not correlate reliably with catecholamine production.

Branchiomyeric paraganglia, which are more commonly chromaffin negative and non-functioning, are rare in childhood. In the series of Stackpole et al only one in 100 children had an associated non-chromaffin positive paraganglioma in addition to a phaeochromocytoma. This was in a 12 year old boy who seven years after removal of an intra-abdominal and a thoracic paraganglioma, at the age of 19 years, was found to have a carotid body tumour.

Revak et al reported a 36 year old man with bilateral carotid body tumours who had a phaeochromocytoma resected at the age of 11 years. Carotid body tumours in isolation occur commonly in the third to sixth decades of life and are only rarely reported in children—in a 1986 review of carotid body tumours by Dickenson et al only one of 32 cases was less than 16 years old.

Familial phaeochromocytoma are well recognised. In the review of Stackpole et al, 9% of cases had a positive family history, and in that of Kaufman et al in 1983 of phaeochromocytoma at the Mayo clinic, 31% of cases were familial. Familial occurrence may or may not be associated with multiple endocrine neoplasia syndromes or with neurocutaneous syndromes (neurofibromatosis, von-Hippel Lindau). In multiple endocrine neoplasia syndromes there is a high incidence of bilateral adrenal phaeochromocytoma. Inheritance in familial cases is by mendelian dominant transmission with variable penetrance. No child in the present series had evidence of a multiple endocrine neoplasia syndrome.

Raised plasma renin activity in association with phaeochromocytoma has been previously described. Reports of the association of renal artery stenosis with phaeochromocytoma have appeared in the literature since 1963 when Rosenheim et al observed unilateral renal ischaemia due to compression of a renal artery by a phaeochromocytoma.
reported a raised plasma renin activity as well as catecholamines in an 11 year old girl; an intra-adrenal tumour was removed, which was not found to be compressing the renal artery or the kidney. Both catecholamines and plasma renin activity fell to normal after surgery. Before surgery haemodynamic studies indicated that there was reduced renal cortical blood flow and fractional flow to the outer cortex consistent with the effects of catecholamines or with those of angiotensin. A 9.5 year old girl was reported by Robinson et al in 1973 who was found to have a renal artery stenosis independent of her pheochromocytoma and not due to compression or haemodynamic effects. These reports suggest that high plasma renin activity in the presence of a pheochromocytoma may be due to one or more of several factors: (i) ischaemia secondary to volume depletion caused by excess catecholamines, (ii) compression of a renal artery by the tumour, (iii) intrinsic renal artery diseases, and (iv) intrinsic renal parenchymal disease. Four children in the present series were found to have raised plasma renin activities at presentation. In one child (case 10) this was presumed to be due to the pressure of a large adrenal pheochromocytoma on the upper pole of the kidney causing distortion of the upper pole artery on the arteriogram; in the other three cases the intra-adrenal tumours were felt to be too small to be causing a pressure effect.

Reliance on urinary determinations of vanillylmandelic acid excretion can be misleading in paragangliomata. The amounts of free catecholamines and their metabolites vary depending on the levels of synthesising and metabolising enzymes within the tumour and the excretory function of the kidneys. These factors may account for the false positive and negative results that are reported. In addition, in children, 24 hour urinary collections are difficult and cumbersome to obtain and are not always possible. Plasma catecholamine concentrations have the highest sensitivity for diagnosing paragangliomata; urinary vanillylmandelic acid concentrations are the least sensitive tests. Plasma catecholamines should be obtained under standardised, controlled conditions, however, which are often difficult to achieve in children. It has been suggested, in adults, that a raised plasma adrenaline may be used as a marker for distinguishing between adrenal and extra-adrenal tumours as the adrenal medulla is the principal source of adrenaline and so, theoretically, both plasma adrenaline and noradrenaline concentrations should be measured. In practice, however, we found that the seven children in our series with adrenal tumours whose plasma noradrenaline concentrations were measured, had appreciably raised values. Case 7 had raised noradrenaline concentrations before removal of both her intra-adrenal and extra-adrenal tumours.

We did not find it necessary to perform pharmacological tests on our patients to make the diagnosis of pheochromocytoma and would view them as being potentially dangerous procedures to undertake.

The localisation techniques that were used in our 10 cases have already been outlined in table 3. The current literature suggests that the use of computed tomography should all but eliminate the need for potentially hazardous arteriographic studies in the preoperative detection and localisation of paragangliomata. This has not been our experience nor that of others. Ultrasound and computed tomography were only helpful in localising large tumours. In only three of the eight patients who had an ultrasound scan was the scan positive. For two patients, who initially had negative scans, when their tumours were localised by other means, repeating the ultrasound scan allowed the pheochromocytoma to be visualised. Computed tomography was positive in two of five patients only and missed a 5 cm diameter tumour in one case.

The recently introduced meta-iodo-benzyl guanidine (MIBG) scanning for localising catecholamine producing tumours was not the most sensitive investigation in our patients. We used 123I instead of 131I labelled MIBG as this decreases radiation exposure and increases the sensitivity of the scan. Using 123I-MIBG, however, normal adrenal glands are visualised and in our patients it has been difficult to distinguish increased MIBG uptake in an abnormal gland from normal adrenal MIBG uptake particularly in one child (case 9) who had bilateral adrenal pheochromocytomata. Case 7 had a positive MIBG scan at presentation (fig 1) but subsequently MIBG scanning was unhelpful because her paragangliomata were either intra-adrenal or anatomically situated very near her adrenals. The MIBG scan was unable to distinguish these tumours from normal adrenal glands. A review of the use of MIBG scanning in 400 cases concluded that, in the case of sporadic intra-adrenal lesions MIBG scanning is probably no better than a computed tomogram but is superior for localising extra-adrenal, recurrent, and malignant lesions.

Although invasive and time consuming we...
found arteriography and venous catecholamine sampling to be the most helpful investigations for localising tumours. In all eight children who underwent arteriography the tumours were localised. Sampling was very helpful and localised the tumours in six out of seven children studied. In one child (case 9) sampling was positive but because he had bilateral adrenal phaeochromocytomata it was difficult to localise precisely the sources of catecholamine production. In another (case 7) sampling was particularly helpful in localising her multiple tumours (figs 2 and 3). In one child (case 3) arteriography and sampling enabled us to identify a 0.3 cm intra-adrenal phaeochromocytoma that had not been identified by other means.

Preoperative control of the hypertension in patients with phaeochromocytomata is very important, both for definitive surgery and arteriography. Perioperative deaths have usually resulted from inadequate preoperative preparation and blood pressure control.22 The treatment for phaeochromocytomata has traditionally involved the use of α and β sympathomimetic blocking agents: usually phenoxybenzamine and propranolol. Five of our children have been successfully treated with this combination alone preoperatively. More recently labetolol, which has both α and β blocking activity, has been used in the management of phaeochromocytoma.23 Oral labetolol was used in three of our children but did not produce adequate α blockade and so their treatment was changed. Recently interest has grown in the use of nifedipine in the management of catecholamine excess states. Serfas et al first reported the suppression of symptoms by nifedipine in a patient with hypertrophic cardiomyopathy and a phaeochromocytoma.24 Symptom relief was associated with a fall in plasma noradrenaline concentrations suggesting that nifedipine blocked the release of noradrenaline from phaeochromocytomata. A second report by Lenders et al postulated that nifedipine blocked the peripheral action of noradrenaline by exhaustion of intracellular calcium stores after chronic noradrenaline stimulation in a patient with a bladder paraganglioma.25 Four of the present series were treated with nifedipine; however, in only two of the children was adequate preoperative control of their blood pressures achieved with nifedipine alone.

Paragangliomata are rare in childhood and

Figure 2 Case 7: noradrenaline sampling data showing high concentrations from the left adrenal vein. A tumour was subsequently removed from the right para-adrenal region. Results are in pg/ml; to convert to nmol/l, \(\times 0.005988\).

Figure 3 Case 2: noradrenaline sampling data showing high concentrations from the left adrenal vein. A left intra-adrenal phaeochromocytoma was removed subsequently. Results are in pg/ml; to convert to nmol/l, \(\times 0.005988\).
hence experience in any one institution is limited. Our experience of 10 cases differs in some respects from that previously reported with a lower incidence of extra-adrenal and multiple tumours. Despite recent advances in radiological techniques for localising tumours we have continued to find arteriography and catecholamine venous sampling to be the most sensitive techniques for localising tumours and for providing important preoperative surgical information regarding the vascular supply of a tumour. The use of nifedipine in the preoperative preparation of our most recent cases has been encouraging, although in most cases phenoxybenzamine and propranolol remain the drugs of first choice for catecholamine blockade. Case 7 illustrates the importance of close follow up for further tumours and the association of other tumours of the paraganglioma system in the same patients.

We thank the department of clinical pharmacology, St Mary’s Hospital, London, for performing the catecholamine assays, Dr I Gordon and the department of radiology at the Hospital for Sick Children and our surgical colleagues Mr DJ Williams, Mr PG Ramsley, Mr P Duffy, and Miss AO Mansfield for their expertise. Dr JE Deal was supported by the Charlotte Parkinson Research Fund and John Herring and friends (Child Health Research Appeal Trust).

Phaeochromocytoma--investigation and management of 10 cases.

J E Deal, P S Sever, T M Barratt and M J Dillon

Arch Dis Child 1990 65: 269-274
doi: 10.1136/adc.65.3.269

Updated information and services can be found at:
http://adc.bmj.com/content/65/3/269

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/