Correspondence

Glucose intolerance in cystic fibrosis

Sir,

Stutchfield et al in their studies of glucose intolerance in children with cystic fibrosis report pancreatic islet cell antibodies in five of 24 patients with glucose intolerance identified by raised glycated haemoglobin (HbA1). They suggest that an autoimmune response to damaged pancreatic tissue may promote the development of glucose intolerance. We would like to suggest a further factor that appears to influence glucose tolerance and may be relevant to the interpretation of glucose tolerance tests and the subsequent development of insulin dependent diabetes in cystic fibrosis.

We have recently reported a modified Ussing chamber technique to study ion transport in the cystic fibrosis enterocyte using jejunal biopsy tissue. The basal potential difference, short circuit current, and resistance of 22 control biopsy specimens and 11 biopsy specimens from patients with cystic fibrosis are shown in fig 1. Initial differences in potential difference and short circuit current probably reflect basal secretion in the control tissues, which is absent in epithelia in cystic fibrosis. Both chloride secretion and nutrient absorption are active electrogenic processes whose activation can be detected as a rise in short circuit current. All control biopsy specimens responded to the stimulation of chloride secretion by acetylcholine with an increase in short circuit current but the specimens from patients with cystic fibrosis failed to exhibit such a response (fig 2). This indicates the lack of a functioning chloride secretory mechanism similar to that observed in other affected epithelia. Both control biopsy specimens and those from patients with cystic fibrosis generated an increase in short circuit current when glucose was added to the luminal surface but this effect was significantly greater in the specimens from patients with cystic fibrosis. This suggests that glucose uptake is enhanced in cystic fibrosis, an observation that has also been noted in in vivo perfusion studies. The relative glucose intolerance seen in cystic fibrosis may therefore be a consequence of an increased rate of glucose absorption.

References


C J TAYLOR and P S BAXTER
Department of Paediatrics, Sheffield Children's Hospital, Sheffield S10 2TH

J HARDCASTLE, P T HARDCASTLE, and J GOLDHILL
Department of Biomedical Science, University of Sheffield S10 2TN
Glucose intolerance in cystic fibrosis.

C J Taylor, P S Baxter, J Hardcastle, P T Hardcastle and J Goldhill

Arch Dis Child 1989 64: 759
doi: 10.1136/adc.64.5.759

Updated information and services can be found at:
http://adc.bmj.com/content/64/5/759.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/