We recently treated a girl aged 1½ years with steroids; however, she did not show any clinical response. She eventually improved with 6-mercaptopurine in a dose of 75 mg/m². We suggest that these patients should be given an initial trial of steroid for four to six weeks. If the response is poor or inadequate, treatment with alkylating agents or antimetabolites is warranted.

References

N K Arora and R Koyyana
Department of Paediatrics,
All India Institute of Medical Sciences,
Ansari Nagar, New Delhi 110 029,
India

Cerebral arterial air embolism in experimental neonatal pneumothorax

SIR,

Fenton et al reported five cases of air embolism in ventilated very low birthweight infants with fatal outcome.1 Two of the infants had pneumothorax, in one case on both sides. They have said, that 'air embolism represents the extreme end of the range of air leaks' in the perinatal period.

We have observed the pial-arachnoideal microcirculation intravitaly (Wild Photomacroscope) on anaesthetised, immobilised, and artificially ventilated newborn piglets during the course of induced bilateral pneumothorax.2 3 Up to now we have studied 30 animals and in three cases we have found artificial cerebral arterial air microembolisation with fatal outcome within minutes. The affected microvessels showed significant vasoconstriction with the rapid cessation of the blood flow (figure). Concomitantly, air bubbles were seen in the umbilical arterial blood sample in all three cases.

Our in vivo observations suggest that air embolisation may occur more frequently than has been reported during neonatal air leaks and may also affect cerebral microcirculation.

Supported by the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany.

References

P Temesvari, J Kovacs, and K Racz
Department of Pediatrics,
Albert Szent-Györgyi University Medical School,
Szeged, Hungary

Recurrent cot death and suffocation

SIR,

The careful study by Beal and Blundell shows an incidence of sudden infant death syndrome (SIDS) 10 times greater in the previous siblings of an infant who has died of the syndrome compared with controls.1 They show that the circumstances and the families, in which two or more siblings died from SIDS, differed from those in which only one infant died in several important ways, including a more variable and older age at death. In postulating that 'both genetic and environmental factors seem to contribute to recurrence of SIDS in families' it is a pity that the authors do not confront the issue more squarely and acknowledge that some of these deaths will have been caused directly by the mothers—that is, filicide or homicide. In order to understand the epidemiology of SIDS better, and also to prevent deaths, it is important to recognise that a small proportion of children labelled as 'SIDS' are killed by their parents, usually their mother. Emery has suggested that between 2% and 10% of cot deaths result from filicide,2 and in his detailed study of 12 families in Sheffield who incurred two or more cot deaths, he concluded that in five of those families filicide was either certain or probable.3

From my current study of 21 families in which the mother has suffocated a young child it has become apparent how often that child has originally been labelled as SIDS and contributed to false national statistics concerning the syndrome. Within these families a recurrence of unexplained, or definitely homicidal, deaths in other siblings is high; it is noteworthy that for those children previously labelled SIDS their age at death is both more.

Figure. Intravital microphotographs of the pial-arachnoideal microvessels in a newborn piglet (a) before and (b) 40 minutes after the induction of experimental pneumothorax. Arrows point to the arterial air emboli accompanied by severe vasoconstriction. Bar = 1.0 μm.
Measuring severity of injuries to children from home accidents

Sir,

We support the view expressed by Alwash and McCarthy that a severity scale of childhood accidental injury is a necessary requirement for appropriate epidemiological research. We consider that for such a scale to be fully reliable, however, it should not depend on treatment but rather be based on an objective assessment of the injury itself or the clinical status of the patient, or both.

Treatment dependent scales are an example of indirect severity indices and are susceptible to many biases. For example the decision to admit an injured victim to hospital will vary by place, over time, and by person (for example, social class of the patient, seniority of the attending doctor).

The use of these scales therefore introduces great difficulties into attempts to study some of the important issues relating to accidental injury in childhood—for example, outcome of different treatments, the relationship of social class to injury severity, evaluation of preventative programmes, and measures of the ‘true’ frequency of accidental injury in the community.

The development of objective, direct severity indices (for example, the abbreviated injury scale as alluded to by the authors) may provide one method to overcome the difficulties highlighted. This type of scaling has been applied to a paediatric population and judged to be both reliable and valid. Indeed in the Swedish studies of the early 1970s, Gustafsson, using the abbreviated injury scale, reported that although the actual accident frequency as recorded in hospitals had not diminished since the 1950s, there had been a shift towards less complicated injuries. We therefore believe that ‘direct’ injury severity scaling has great importance in the evaluation of intervention programmes not only because an unbiased rate of injury in the community cannot otherwise be determined but also because as noted by Alwash and McCarthy ‘plans for prevention might seek to reduce the severity of injuries, rather than their frequency’.

References


S S Walsh and S N Jarvis
Department of Child Health,
University of Newcastle upon Tyne,
Newcastle upon Tyne NE2 4HH
Recurrent cot death and suffocation.

R Meadow

Arch Dis Child 1989 64: 179-180
doi: 10.1136/adc.64.1.179-a

Updated information and services can be found at:
http://adc.bmj.com/content/64/1/179.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/