Two mutations of dihydropteridine reductase deficiency

A PONZONE,* O GUARDAMAGNA,* S FERRARIS,* G BRACCO,† A NIEDERWIESER,‡ AND R G H COTTON§

*Pediatric Clinic, University of Turin, †Regina Margherita Children’s Hospital, Turin, Italy, ‡Department of Pediatrics, University of Zürich, Switzerland, and §Murdoch Institute, Royal Children’s Hospital, Parkville, Australia

SUMMARY Two patients with dihydropteridine reductase (DHPR) deficiency, in one case due to the absence of any enzyme protein (DHPR− cross reactive material (CRM)−) and in the other case due to the production of a mutant type devoid of catalytic activity (DHPR− CRM+) were examined. This latter form of malignant phenylketonuria, whose relative frequency seems to be higher in the Italian population, possibly has a worse prognosis. The earlier onset and the greater severity of clinical symptoms are associated with a more pronounced hydroxylation defect, as shown by higher degree of neonatal hyperphenylalaninaemia, unresponsiveness to an oral tetrahydrobiopterin load, lower concentrations of neurotransmitter metabolites, and reduced tyrosine production after an oral phenylalanine load.

The first observation that concerns the lack of response of phenylketonuric children to dietary treatment is that of Mary Efron in 1965 reported by McKusick.1 Dr Efron pointed out that phenylketonuria (PKU) seldom affects people of southern Italian origin, but when it does, it is unresponsive to diet and causes death in the first years of life. The observation may have been the result of some type of tetrahydrobiopterin (BH₄) deficiency, which was not recognised at that time, as a possible cause of primary hyperphenylalaninaemia. This hypothesis is supported by the recent finding that among people of southern Italian origin the frequency of BH₄ deficiency seems higher than in other populations, mainly due to the higher prevalence, and clustering in Sicily, of dihydropteridine reductase (DHPR) deficiency.2 As this form of atypical PKU is known to be heterogeneous with respect to the molecular defect3 and the response of an oral BH₄ load,4 two patients deficient in DHPR, originating from the south of Italy and with different clinical presentations, were evaluated in an attempt to determine a correlation with their enzyme state and BH₄ responsiveness.

Case reports

A girl (case 1), born on 20 February 1983, was the second child of second cousin parents originally from Calabria, a region of southern Italy. She had 7 mg% plasma phenylalanine at 4 days of age on Guthrie mass screening, and had confirmed diagnosis of hyperphenylalaninaemia (1268 μmol/l) at the age of 20 days when a phenylalanine restricted diet was started. Physical and neurological development was judged to be normal up to the age of 7 months, although head circumference seemed to be reduced from the sixth month. Her phenylalanine tolerance, unlike that in PKU, was stable at the high value of about 60 mg/kg/day. Over the next few months it was evident that she was slow in reaching developmental milestones and there was subsequent regression with progression of the typical neurological picture of BH₄ deficiency. An electroencephalogram gave repeatedly normal results, and no episodes of hyperthermia occurred. The diagnosis of DHPR deficiency was made at the age of 10 months and treatment with levodopa, 5-hydroxytryptophan, and carbidopa was added to the phenylalanine restricted diet. After several adjustments,5 the clinical response to the treatment was good. The girl is now attending a kindergarten, has no gross motor or speech disabilities, and her intelligence quotient was 95 at the age of 3 years and 9 months.

A boy (case 2), born on 4 April 1983, was the third child of first cousin parents who originated
from Sicily. A neonatal Guthrie test was not done and he was on a free diet until the age of 10 months when the hyperphenylalaninaemia was ascertained (1320 \(\mu \text{mol/l} \)). Difficulty in feeding, extreme truncal hypotonia, and eye deviation had appeared in the first two months of life, and by the fifth month psychomotor deterioration, microcephaly (head circumference below the third centile), repeated daily myoclonic convulsions and hypersynchronous activity shown on electroencephalography were present. A phenylalanine restricted diet was started at 10 months, and neurotransmitter treatment was added at 13 months after the diagnosis of DHPR deficiency. Despite the severity of the clinical picture and the delay in beginning treatment, the patient slowly improved. Convulsions stopped within six months with electroencephalography giving normal results. Motor disabilities and behavioural abnormalities diminished and head circumference increased (it is now over the 10th centile). At 2 years 6 months of age the patient started walking and speaking some simple words; his intelligence quotient, however, was only 45 at the age of 3 years and 5 months.

Methods and results

The activity of DHPR was measured by assay of dried blood spots and on cultured fibroblasts. Both methods showed no activity in the patient’s cells. All four parents exhibited intermediate values (table 1).

Immunoprecipitation of DHPR was carried out after labelling of fibroblasts with \(^{35}\)S methionine. Immunoprecipitates were then separated by sodium dodecyl sulphate polyacrylamide electrophoresis according to Laemmli and detected by fluorography. The method was sensitive enough to detect 5% of normal enzyme concentrations. Cross reactive material (CRM) was present near normal concentrations in the boy (case 2) and was absent in the girl (case 1); this has already been reported by us.

Serum folate measurements were performed by means of a commercial radioassay kit (Ciba Corning MAGIC Vitamin B\(_{12}\)/Folate NB) at diagnosis and after 10 days of oral administration of folic acid at 15 mg/day (table 1). Only the girl was found deficient in folate, but both patients failed to show any metabolic or clinical improvement with this treatment.

An oral BH\(_{4}\) loading test was given to both patients. As the boy showed no reduction in plasma phenylalanine concentrations he was given 2 mg/kg BH\(_{4}\) intravenously, to which he responded partially (table 2).

Urine and cerebrospinal fluid (CSF) pterins, CSF neurotransmitter metabolites, homovanillic acid (HVA) and 5-hydroxydol acetic acid (5-HIAA) were measured by high performance liquid chromatography with electrochemical detection at high and low plasma concentrations of phenylalanine (table 3). The urinary and CSF pterin patterns were similar in the two patients, in both of whom the pterin pattern reverted towards normal under dietary treatment. At diagnosis the boy showed

<table>
<thead>
<tr>
<th>Case No and route of administration of BH(_{4})</th>
<th>Dose of BH(_{4}) (mg/kg)</th>
<th>Plasma phenylalanine concentration ((\mu \text{mol/l}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4 hours</td>
<td>8 hours</td>
</tr>
<tr>
<td>Case 1: oral</td>
<td>7-5</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>Case 2: oral intravenous</td>
<td>7-5</td>
<td>1386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1344</td>
</tr>
</tbody>
</table>

Table 1 Dihydropteridine reductase (DHPR) activity in dried blood spots and in cultured fibroblasts of the two families, and serum folate values in the patients before and after folinic acid treatment

<table>
<thead>
<tr>
<th>DHPR activity</th>
<th>Erythrocytes</th>
<th>Fibroblasts</th>
<th>Serum folate (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
<td>Day 10</td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>None detected</td>
<td>None detected</td>
<td>2-7</td>
</tr>
<tr>
<td>Father</td>
<td>1-14</td>
<td>Not determined</td>
<td>20</td>
</tr>
<tr>
<td>Mother</td>
<td>1-82</td>
<td>Not determined</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>None detected</td>
<td>None detected</td>
<td>20</td>
</tr>
<tr>
<td>Father</td>
<td>1-37</td>
<td>Not determined</td>
<td>43</td>
</tr>
<tr>
<td>Mother</td>
<td>0-92</td>
<td>Not determined</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>3-34 (0-88)*</td>
<td>49-6 (2-8)^†</td>
<td>3-17</td>
</tr>
</tbody>
</table>

*Value is mean (SD) (nmol cytochrome C reduced/minute/5 mm diameter, filter paper disc).
†Value is mean (SD) (nmol NADH oxidised/minute/mg protein).
‡1% of normal activity could be confidently assayed.
Table 3 Pattern of pterins in urine and cerebrospinal fluid; concentrations of homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA) recorded in the two patients in basal conditions and during phenylalanine restricted diet with substitutive neurotransmitter treatment

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (months)</th>
<th>Treatment</th>
<th>Plasma phenylalanine concentrations (mg%)</th>
<th>Urine</th>
<th>Cerebrospinal fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biopterin</td>
<td>Neopterin</td>
<td>%B*</td>
</tr>
<tr>
<td>Case 1</td>
<td>14</td>
<td>Restricted diet, levodopa, 5-hydroxytryptophan, carbidopa</td>
<td>6</td>
<td>6-51</td>
<td>1-02</td>
</tr>
<tr>
<td>Case 2</td>
<td>13</td>
<td>Restricted diet, levodopa, 5-hydroxytryptophan, carbidopa</td>
<td>3</td>
<td>4-03</td>
<td>2-80</td>
</tr>
<tr>
<td>Case 2</td>
<td>23</td>
<td>Restricted diet, levodopa, 5-hydroxytryptophan, carbidopa</td>
<td>24</td>
<td>13-8</td>
<td>2-86</td>
</tr>
<tr>
<td>Healthy controls</td>
<td></td>
<td></td>
<td>3</td>
<td>1-95</td>
<td>1-29</td>
</tr>
</tbody>
</table>

*%B=100\times\text{biopterin/biopterin+neopterin}.
†BNCR (biopterin/neopterin creatinine ratio)=\text{biopterin/biopterin+neopterin-biopterin/creatinine-105}.
‡In both cases the treatment was discontinued for more than a week: in case 1 because the drugs were not available and because of the high phenylalanine tolerance; in case 2 the parents were initially not fully convinced of the benefit of the treatment.

lower HVA and 5-HIAA concentrations in the CSF than the girl, but he also had higher phenylalanine concentrations. Correction was achieved in both patients with similar doses of hydroxylated neurotransmitter precursors.

An oral load of phenylalanine (0-6 mmol/kg) was given, and amino acids were measured chromatographically with the Kontron Chromakon 500 automatic analyser. The impairment of hydroxylating activity was possibly more pronounced in the boy, as indicated by a somewhat slower fall in plasma concentrations of phenylalanine and lesser rise in tyrosine (figure).

Discussion

Clinical variation in patients with inborn errors of metabolism is common due to quantitative as well as qualitative differences in underlying mutations and additional factors. Three different enzyme defects
cause BH4 deficiency, guanosine triphosphate cyclo-
hydrolase I (GTP-CH I) and 6-pyruvoyl tetrahydro-
pterin synthase (PTPS) deficiency causing impaired
synthesis and DHPR deficiency causing impaired
recycling of the cofactor. Further heterogeneity has
been described within these defects.14 The use of a
BH4 oral load as a diagnostic tool has shown that a
minority of patients deficient in DHPFR fail to lower
their plasma phenylalanine after loading,4 and in
addition it has been shown that some patients have
no mutant protein (DHPR− CRM−) in their cells,
whereas others have (DHPR− CRM+).3 15 It has been
reported that CRM− cases are BH4 responders
and CRM+ are non-responders and that the latter
have a worse prognosis.9

The present study strengthens the hypothesis that
the presence of the mutant DHPFR is worse clinically;
shown by the earlier onset of symptoms and the
relatively poor clinical response to neurotransmitter
treatment in the patient with CRM+, although the
delay in starting a phenylalanine restricted diet
could also have contributed.

Contrary to the opinion that the unresponsiveness
to exogenous BH4 could be due to the total
deficiency of DHPFR catalytic activity,16 this was
present in both our patients and only the child
who was CRM+ gave a negative response after
oral loading. Unresponsiveness to exogenous BH4
could be due to the binding of cofactor to the mutant
enzyme, making BH4 unavailable for hydroxylation.
If so, a decrease of plasma phenylalanine might be
achieved by loading these patients with doses of
BH4 large enough to exceed the CRM+ binding
capacity; the CRM+ patient described here did
respond to intravenous BH4, and together with
another non-responding patient also responded to
higher oral doses.17 Alternative hypotheses might be
the production of a reactive pterin, which inactivates
hydroxylases, or the inhibition of the hydroxylases
by the mutant enzyme. In any of these cases, the
endogenous biosynthetic BH4 would be less avail-
able in CRM+ patients, leading to a worse outcome.
The CRM+ patient described here may have had a
more pronounced hydroxylation defect than the
child who was CRM− in view of the lower basal
concentrations of HVA and 5-HIAA, and the
reduced tyrosine production after oral phenylala-
nine load. Furthermore neonatal hyperphenylalan-
inaemia has been reported to be higher in patients
who were CRM+ than in patients who were
CRM−.9

Within the DHPFR deficiency the relative fre-
quency of non-responding and responding cases to
the oral load of BH4 has been reported in worldwide
surveys as 1:3–1:4,4 14 although this may not be true
for the Italian population, as two out of four
patients, both originally from Sicily, did not respond
to the load.2 A continuum of conditions is to be
expected, depending on differences in the mutations.
Cases with residual reductase activity18 or
partial CRM+ 9 are known to have a milder course.

References
3. Firgaira FA, Choo KH, Cotton RGH, Danks DM. Heterogeneity
in the molecular defect in human dihydropteridine reductase
of tetrahydrobiopterin deficiency. J Inher Metab Dis 1985;8
(suppl 1):34–8.
5. Ponzone A, Guardamagna O, Ferraris S, Bussetti S, Bracco G,
Niederwieser A. Neurotransmitter therapy and diet in malignant
6. Arai N, Narisawa K, Hayakawa M, Tada K. Hyperphenylala-
ninaemia due to dihydropteridine reductase deficiency: diagnosis
by enzyme assay on dried blood spots. Pediatrics 1982;70:
426–30.
7. Firgaira FA, Cotton RGH, Danks DM. Human dihydropter-
idine reductase. A method for the measurement of activity in
cultured cells and its application to malignant hyperphenylala-
8. Firgaira FA, Choo KH, Cotton RGH, Danks DM. Molecular and
immunological comparison of human dihydropteridine
reductase in liver, cultured fibroblasts and continuous lymphoid
O. Tetrahydrobiopterin non-responsiveness in dihydropteridine
reductase deficiency is associated with the presence of mutant
10. Laemmli UK. Cleavage of structured proteins during the
assembly of the head of bacteriophage T4. Nature 1970;227:
680–5.
phenylketonuria with defective biotin metabolism. Mono-
therapy with tetrahydrobiopterin or sepiapterin, screening and
liquid chromatography with column switching for the analysis of
biogenic amine metabolites and proteins. J Chromatogr 1984;
290:437–46.
13. Guttler F, Hansen G. Different phenotypes for phenylalanine
14. Dhondt JL. Tetrahydrobiopterin deficiencies: Preliminary
15. Firgaira FA, Cotton RGH, Danks DM. Human dihydropter-
idine reductase deficiency. Demonstration of DHPFR CRM
and DHPR CRM mutants. In: Blair JA, ed. Chemistry and
biology of pteridines. Berlin: Walter de Gruyter and
16. Lipson A, Yu J, O’Halloran M, Potter M, Wilken B. Dihydro-
pteridine reductase deficiency: non-response to oral tetrahydro-
17. Ponzone A, Guardamagna O, Ferraris S, Bracco G, Cotton
RGH. Screening for malignant phenylketonuria. Lancet 1987;1:
512–3.
18. Nakabayashi H, Owada M, Kitagawa T. A mild case of
dihydropteridine reductase deficiency with residual activity in

Correspondence and requests for reprints to Dr A Ponzone,
Clinica Pediatria dell’Universita, Piazza Polonia, 94, 10126
Torino, Italy.

Received 25 September 1987
Two mutations of dihydropteridine reductase deficiency.
A Ponzone, O Guardamagna, S Ferraris, G Bracco, A Niederwieser and R G Cotton

Arch Dis Child 1988 63: 154-157
doi: 10.1136/adc.63.2.154

Updated information and services can be found at:
http://adc.bmj.com/content/63/2/154

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/